Plano Regional de Água e Esgoto do Sistema Corsan

Município de Rosário do Sul

COMPANHIA RIOGRANDENSE DE SANEAMENTO

CONSULTORIA MLAYDNER – INTELIGÊNCIA EM SANEAMENTO

Coordenação Geral

Mariangela Correa Laydner – Engenheira Civil e de Segurança do Trabalho

Coordenação Adjunta

João Victor Malheiros Vidal da Vinha – Engenheiro Ambiental

Nathália Miranda das Chagas – Engenheira Ambiental

Matheus Correia Martinho da Silva – Engenheiro Ambiental

Raísa Fagundes dos Santos – Engenheira Hídrica

Equipe Técnica

Anna Clara Muniz Correia – Estagiária de Engenharia Ambiental

Arnaldo Mailes Neto – Engenheiro Ambiental

Louise Pinho Novaes – Engenheira Ambiental

Thaís Texeira Rodrigues Lima – Engenheira Ambiental

LISTA DE FIGURAS

Figura 1 – Localização e delimitação do município	11
Figura 2 – Classificação Climática (KOPPEN) dos municípios atendidos pela CORSAN	13
Figura 3 – Classificação de províncias estruturais dos municípios atendidos pela CORSAN	J15
Figura 4 – Unidades geomorfológicas da região dos municípios atendidos pela CORSAN.	17
Figura 5 – Regiões Hidrográficas do Rio Grande do Sul.	19
Figura 6 – Municípios do Plano Regional inseridos na Região Hidrográfica do Uruguai	23
Figura 7 – Rios Principais da Região Hidrográfica do Uruguai	26
Figura 8 – Enquadramento dos rios principais na Bacia Hidrográfica Santa Maria	27
Figura 9 – Sistemas Aquíferos do Rio Grande do Sul	29
Figura 10 — Índice de Segurança Hídrica Urbano (ISH-U) dos municípios atendido	os pela
CORSAN	47
Figura 11 – Distribuição de biomas ao longo dos municípios atendidos pela CORSAN	49
Figura 12 – Tendencia da população total do município (1991-2022)	51
Figura 13 – Escala do IDH.	52
Figura 14 – Tendência histórica do IDHM no município	53
Figura 15 – Distribuição das classes de cobertura e uso do solo ao longo dos municípios ate	endidos
pela CORSAN	60
Figura 16 – Taxas de crescimento acumuladas – 2023/2022.	62
Figura 17 – Percentual de ocupação no município – 2010	63
Figura 18 – Imagem de satélite do município de Rosário do Sul	66
Figura 19 – Croqui da distribuição de água no município de Rosário do Sul	69
Figura 20 – Pontos vulneráveis do SAA.	70
Figura 21 – Zonas de maior consumo.	71
Figura 22 – Imagem de satélite do Google Earth com a localização das EBEs e ETEs o	lo SES
Rosário do Sul.	73
Figura 23 – Fluxograma simplificado do tratamento nas ETE Ana Luiza.	75
Figura 24 – Fluxograma simplificado do tratamento nas ETE Areias Brancas	75
Figura 25 – Fluxograma simplificado do SES Rosário do Sul.	76
Figura 26 – Pontos vulneráveis do SES	77

LISTA DE QUADROS

Quadro 1 – Classificação climática do município12	2
Quadro 2 – Classificação das províncias estruturais do município14	1
Quadro 3 – Unidades geomorfológicas do município	5
Quadro 4 – Áreas das Regiões e Bacias Hidrográficas do Rio Grande Sul20)
Quadro 5 – Região e Bacia Hidrográfica do município	1
Quadro 6 – Relação dos municípios por Bacia Hidrográfica na Região Hidrográfica do Uruguai	. •
2	1
Quadro 7 – População urbana residente na Região Hidrográfica do Uruguai24	1
Quadro 8 – Cursos d'água da Região Hidrográfica do Uruguai e principais usos24	1
Quadro 9 – Aquíferos do Estado do Rio Grande do Sul30)
Quadro 10 – Demandas hídricas médias (em m³/dia) e nº de processos de águas subterrâneas na	S
bacias hidrográficas do Rio Grande do Sul34	1
Quadro 11 – Demandas hídricas médias (em m³/dia) e nº de processos de águas subterrâneas po	r
sistema aquífero no Rio Grande do Sul33	5
Quadro 12 – Disponibilidade hídrica nas Bacias Hidrográficas do Estado do Rio Grande do Sul	
	7
Quadro 13 – Demandas hídricas médias superficiais nas bacias hidrográficas do Estado3	3
Quadro 14 – Balanço hídrico nas Bacias Hidrográficas do Rio Grande do Sul40)
Quadro 15 – Distribuição dos valores de Oxigênio Dissolvido por Classe de Uso da Água no)
conjunto de amostras da Região Hidrográfica do Uruguai42	2
Quadro 16 – Distribuição dos valores de Demanda Bioquímica de Oxigênio por Classe de Uso d	a
Água no conjunto de amostras da Região Hidrográfica do Uruguai42	2
Quadro 17 – Distribuição dos valores de Escherichia coli por Classe de Uso da Água no conjunto	Э
de amostras da Região Hidrográfica do Uruguai	3
Quadro 18 – Distribuição dos valores de Fósforo Total por Classe de Uso da Água no conjunto d	е
amostras da Região Hidrográfica do Uruguai	3
Quadro 19 – Distribuição dos valores de Nitrogênio Amoniacal por Classe de Uso da Água no)
conjunto de amostras da Região Hidrográfica do Uruguai44	1
Quadro 20 – Índice de Segurança Hídrica Urbano do município40	5
Quadro 21 – Bioma do município43	3

Quadro 22 – IDHM e seus componentes no município – 2010	54
Quadro 23 – Evolução do índice de Gini do estado do Rio Grande do Sul	54
Quadro 24 – Tendência histórica do Índice de Gini no município	54
Quadro 25 – Média de internação por DRSAI em abril de 2024	56
Quadro 26 – Taxa de alfabetização do município – 2022.	57
Quadro 27 – Classificação uso e cobertura do solo	58
Quadro 28 – Distribuição do uso e cobertura do solo do município	61
Quadro 29 – VAB dos setores do município – 2021.	62
Quadro 30 – PIB municipal e <i>per capita</i> do município – 2021	64
Quadro 31 – Informações referente aos reservatórios.	67
Quadro 32 – Área com maior demanda de consumo	71
Quadro 33 – Informações referente as estações de bombeamento	72
Quadro 34 – Programa, projetos e ações estruturais para os sistemas de abastecimento	de água.87
Quadro 35 – Programa, projetos e ações estruturantes para os sistemas de abastecimen	to de água.
	88
Quadro 36 – Programa, projetos e ações estruturais para os sistemas de esgotamento sa	nitário91
Quadro 37 – Programa, projetos e ações estruturantes para os sistemas de esgotamente	o sanitário.
	92
Quadro 38 – Programa, projetos e ações de desenvolvimento institucional e setorial	94
Quadro 39 – Matriz de determinação da probabilidade	98
Quadro 40 – Matriz de determinação do impacto/consequência	99
Quadro 41 – Matriz probabilidade x impacto para classificação do risco	99
Quadro 42 – Classificação do risco.	100
Quadro 43 – Ações de Contingência e Emergência – SAA.	102
Quadro 44 – Plano de ação para riscos definidos como alto do SAA	104
Quadro 45 – Ações de Contingência e Emergência – SES.	105
Ouadro 46 – Plano de ação para riscos definidos como alto do SES	107

SUMÁRIO

1. INTRODUÇAO E CONTEXTUALIZAÇAO	9
2. DIAGNÓSTICO GERAL VOLTADO PARA OS INTERESSES DO SANEAMENTO	10
2.1. Caracterização geral da área	10
2.2. Aspectos ambientais	12
2.2.1. Clima	12
2.2.2. Geologia e geomorfologia	14
2.2.3. Hidrografia	18
2.2.3.1. Regiões hidrográficas	18
2.2.3.1.1. Região Hidrográfica do Uruguai	21
2.2.3.2. Disponibilidade, demanda e balanço hídrico	28
2.2.3.2.1. Recursos hídricos subterrâneos	28
2.2.3.2.1.1. Disponibilidade hídrica	28
2.2.3.2.1.2. Demanda hídrica	32
2.2.3.2.2. Recursos hídricos superficiais	37
2.2.3.2.2.1. Disponibilidade hídrica	37
2.2.3.2.2.2. Demanda hídrica	38
2.2.3.2.2.3. Balanço hídrico	39
2.2.3.2.2.4. Qualidade dos mananciais	41
2.2.3.2.2.4.1. Região Hidrográfica do Uruguai	42
2.2.3.3. Segurança hídrica	44
2.3. Aspectos bióticos	48
2.4. Aspectos socioeconômicos	50
2.4.1. Aspectos sociais	50
2.4.1.1. Demografia	50
2.4.1.2. Índice de Desenvolvimento Humano	51
2.4.1.3. Renda	54
2.4.1.4. Saúde	55
2.4.1.5. Educação	57
2.4.1.6. Uso e ocupação do solo	57
2.4.2. Aspectos econômicos	61
2.4.2.1. Atividades e vocações econômicas	61
2.4.2.2. Caracterização do mercado de trabalho	62

2.4.2.3.	Panorama fiscal	63
3. DI	AGNÓSTICO DA INFRAESTRUTURA EXISTENTE	65
3.1.	Abastecimento de água	65
3.1.1.	Captação superficial	65
3.1.2.	Sistema de tratamento de água	66
3.1.3.	Reservação	67
3.1.4.	Estações de bombeamento de água	67
3.1.5.	Rede de distribuição de água	68
3.1.6.	Fluxograma esquemático do sistema	68
3.1.7.	Identificação dos pontos vulneráveis	70
3.1.8.	Identificação das áreas com maior demanda	71
3.2.	Esgotamento sanitário	72
3.2.1.	Rede de coleta de esgoto bruto	72
3.2.2.	Estações de bombeamento de esgoto bruto	72
3.2.3.	Estação de tratamento de esgoto	74
3.2.4.	Emissário do efluente tratado	76
3.2.5.	Corpo receptor	76
3.2.6.	Fluxograma esquemático do sistema	76
3.2.7.	Identificação dos pontos vulneráveis	76
4. OI	BJETIVOS E METAS PARA UNIVERSALIZAÇÃO DOS SERVIÇOS	78
4.1.	Projeção populacional	78
4.1.1.	Método utilizado para projeções populacionais Erro! Indica	dor não definido.
4.1.2.	Projeções populacionais adotadas	78
4.2.	Universalização dos serviços	80
4.2.1.	Objetivos, metas e indicadores	81
4.2.1.1.	Metodologia do cálculo	82
4.2.1.2.	Nível de universalização dos serviços de água	82
4.2.1.3.	Nível de universalização dos serviços de esgotamento sanitário	83
5. PR	ROGRAMAS, PROJETOS E AÇÕES	85
5.1.	Premissas e diretrizes	85
5.2.	Abastecimento de água	86
5.2.1.	Programa, projetos e ações estruturais	86
5.2.2.	Programa, projetos e ações estruturantes	88

5.3.	Esgotamento sanitário	90
5.3.1.	Programa, projetos e ações estruturais	90
5.3.2.	Programa, projetos e ações estruturantes	92
5.4.	Programa de desenvolvimento institucional e setorial	94
5.5.	Fonte de Financiamento	95
6. A	ÇÕES DE EMERGÊNCIAS E CONTINGÊNCIAS	96
5.1. sanitári	Avaliação das vulnerabilidades do sistema de abastecimento de água e do sistema de esgotamento	
6.2.	Categorização dos riscos/vulnerabilidades	98
6.2.1.	Definições dos critérios de vulnerabilidade	98
6.2.2.	Definições dos critérios de gravidade	99
6.3.	Critérios de priorização dos riscos/vulnerabilidades	00
6.4.	Plano de ações de emergências e contingências	01
6.5.	Demais ações contingência e emergência	08
6.6. para ga	Avaliação de alternativas de suprimento hídrico, inclusive com definição de manancial de reserrantir o abastecimento em situações de falha ou insuficiência da captação original	
6.7.	Monitoramento e controle dos mananciais	09
	Descrição do protocolo de comunicação com usuários de água potencialmente impactados pestecimento/risco ambiental devido a panes ou manutenções programadas e responsáveis paração	ela
6.9. e dos ec	Descrição dos procedimentos operacionais relacionados, abrangendo a localização das ferramen quipamentos de manutenção, e rotas de acesso aos pontos críticos	
5.10. situaçõe	Definição dos papéis e responsabilidades de operadores e demais funcionários durante es de emergências	
	IECANISMOS E PROCEDIMENTOS PARA AVALIAÇÃO SISTEMÁTICA DA EFICIÊNCIA CIA DAS AÇÕES1	
7.1.	Indicadores operacionais	14
7.1.1.	Nível de universalização dos serviços de água	15
7.1.2.	Nível de universalização dos serviços de esgotamento sanitário	16
8. M	ONITORAMENTO E AVALIAÇÃO1	18
9. R	EFERÊNCIAS BIBLIOGRÁFICAS1	19
ANIEW	O L. DDOJECÃO DODIJI ACIONAL Free! Indicador não definid	J.,

1. INTRODUÇÃO E CONTEXTUALIZAÇÃO

Este documento integra o Plano Regional de Água e Esgoto (PRAE), complementandoo, de modo que não poderá ser utilizado de forma independente, direcionado aos 317 municípios atendidos pela Companhia Riograndense de Saneamento (CORSAN). O objetivo central do PRAE é estabelecer diretrizes e ações estratégicas que promovam a eficiência, a universalização e a sustentabilidade dos serviços de saneamento básico, visando melhorar a qualidade de vida da população e preservar os recursos naturais regionais.

O desenvolvimento do PRAE está em plena conformidade com a Lei Federal nº 11.445, de 5 de janeiro de 2007, conhecida como a Lei Nacional de Saneamento Básico, que estabelece os parâmetros de regulação e as obrigações para o setor em todo o território nacional. Adicionalmente, este plano incorpora as diretrizes e atualizações introduzidas pela Lei Federal nº 14.026, de 15 de julho de 2020, que ampliou os critérios de prestação dos serviços, definiu metas de universalização e reforçou os mecanismos de fiscalização.

A abordagem adotada pelo PRAE é ampla e integrada, abrangendo aspectos ambientais, sociais e econômicos da área abrangida. Após o diagnóstico das infraestruturas existentes, são definidos objetivos e metas para a universalização dos serviços de abastecimento de água e esgotamento sanitário, que são complementados por programas, projetos e ações essenciais para o alcance desses objetivos.

Além disso, o documento integra mecanismos de emergência e contingência, preparados para oferecer respostas rápidas em situações imprevistas, como crises de escassez hídrica ou falhas nos sistemas de abastecimento de água e esgotamento sanitário.

Para assegurar a efetividade das ações, o plano também estabelece critérios e procedimentos específicos para monitorar e avaliar a eficiência e a eficácia das iniciativas implementadas. A avaliação contínua dos indicadores de desempenho permite identificar oportunidades de melhoria e realizar ajustes necessários, promovendo um ciclo de aprimoramento que favorece tanto a gestão operacional quanto a qualidade do atendimento oferecido aos municípios.

2. DIAGNÓSTICO GERAL VOLTADO PARA OS INTERESSES DO SANEAMENTO

Este capítulo apresenta um diagnóstico das condições atuais relacionadas ao saneamento básico na área de estudo. O objetivo é fornecer uma visão clara das questões ambientais, sociais e econômicas que influenciam os serviços de saneamento.

Este diagnóstico é fundamental para entender a situação atual e as necessidades específicas da região, servindo como base para o planejamento de ações futuras. Ao identificar os principais desafios e potencialidades, o capítulo busca proporcionar uma base sólida para o desenvolvimento de estratégias eficazes e sustentáveis que visem a universalização e a melhoria contínua dos serviços de saneamento.

2.1. Caracterização geral da área

O município de Rosário do Sul, localizado no estado do Rio Grande do Sul, possui uma área total de 4.343,656 km² e uma população total de 36.630 habitantes, segundo o IBGE de 2022. Em relação ao censo de 2010, houve uma queda populacional de aproximadamente 7,7%, resultando em uma densidade demográfica de cerca de 8,43 habitantes por km².

Na **Figura 1**, está sendo apresentada a delimitação e localização do município.

54°24′00″W 51°00′00″W 56°06′00″W 52°42′00″W Legenda Estado do Rio Grande do Sul Município de Rosário do Sul Municípios do Rio Grande do Sul ☐ Brasil 30°00′00″S 30,00,00 32°00′00″S 32°00'00"S 100 km 56°06′00″W 54°24′00″W 52°42′00″W 51°00′00″W

Figura 1 – Localização e delimitação do município.

2.2. Aspectos ambientais

Este capítulo aborda os aspectos ambientais que influenciam e são influenciados pelos serviços de saneamento básico na área de estudo. A análise foca nas interações entre os sistemas de abastecimento de água, esgotamento sanitário e o meio ambiente, destacando a importância de equilibrar o desenvolvimento humano com a preservação dos recursos naturais.

2.2.1. Clima

O levantamento de dados climáticos é fundamental para o planejamento e a implementação de soluções adequadas em saneamento básico, considerando fatores como temperaturas médias anuais e índices pluviométricos. Esses dados permitem a elaboração de estratégias eficazes, especialmente em municípios que enfrentam desafios como secas prolongadas ou chuvas intensas. A gestão eficiente dos recursos hídricos e a resiliência da infraestrutura de saneamento são fortalecidas, garantindo a sustentabilidade e a qualidade de vida.

O estado do Rio Grande do Sul está dividido entre as zonas climáticas Cfa e Cfb, conforme a classificação de Köppen.

O tipo "Cfa" é caracterizado por chuvas ao longo de todos os meses do ano, com a temperatura do mês mais quente superior a 22°C e a do mês mais frio superior a 3°C. Por outro lado, o tipo "Cfb" também apresenta chuvas durante todo o ano, mas a temperatura do mês mais quente é inferior a 22°C e a do mês mais frio é superior a 3°C.

A **Figura 2** ilustra a classificação climática dos municípios dos municípios atendidos pela CORSAN, enquanto o **Quadro 1** foca especificamente no município em estudo.

Quadro 1 – Classificação climática do município.

Município	Classificação climática	
Rosário do Sul	Cfa	

56°00'00,000"W 52°00′00,000″W LEGENDA 27°30'00,000"5 Municípios atendidos pela CORSAN Classificação Climática (KOPPEN) 30°15′00,000″S 30°15'00,000"S 33°00'00,000"5 75 150 km BASE: CENTRO DE ESTUDOS DA METRÓPOLE (USP, 2021) SISTEMAS DE COORDENADAS GEOGRÁFICAS, DATUM SIRGAS 2000 56°00′00,000″W 52°00'00,000"W

Figura 2 – Classificação Climática (KOPPEN) dos municípios atendidos pela CORSAN.

2.2.2. Geologia e geomorfologia

A geologia envolve o estudo das características estruturais do solo e das rochas que compõem o território. No contexto do plano regional de saneamento, a compreensão das formações geológicas é essencial para garantir a adequação e a segurança das obras de infraestrutura.

De acordo com dados do Banco de Dados e Informações Ambientais (IBGE, 2024), a distribuição das províncias estruturais do estado do Rio Grande do Sul varia entre 5 (cinco) classificações, tendo 63,25% da área do estado localizada na província Paraná e 14,51% coberta pela província Mantiqueira, ainda se tem que 10,29% da área está contida na Cobertura Cenozoica, e as demais áreas compreendem a província "Costeira e Margem Continental" (5,62%) e o "Corpo D'água Continental" (6,32%).

A **Figura 3**, que apresenta a classificação das províncias estruturais dos municípios operados pela CORSAN, ilustra as principais formações geológicas presentes na região.

O Quadro 2 apresenta as formações geológicas do município em estudo.

Quadro 2 – Classificação das províncias estruturais do município.

Município	Formações geológicas	Cobertura territorial
	Cobertura Cenozoica	20,80%
Rosário do Sul	Corpo d'água continental	1,08%
	Paraná	78,12%

57°48'00,000"W 51°00′00,000″W 54°24'00,000"W LEGENDA Municípios atendidos pela CORSAN Rio Grande do Sul Costeira e Margem Continental Mantiqueira 300000000000 30°00'00'00°05 32°30'00,000"S 32°30'00,000"S 75 150 km BASE: BANCO DE DADOS E INFORMAÇÕES AMBIENTAIS (IBGE, 2024) SISTEMAS DE COORDENADAS GEOGRÁFICAS, DATUM SIRGAS 2000 57°48′00,000″W 51°00′00,000″W 54°24'00,000"W

Figura 3 – Classificação de províncias estruturais dos municípios atendidos pela CORSAN.

A geomorfologia, por sua vez, foca no estudo das formas do relevo e suas interações com os processos erosivos, deposicionais e dinâmicas climáticas. Na classificação por unidades geomorfológicas, no estado do Rio Grande do Sul predomina a unidade do Planalto dos Campos Gerais (15,41%), seguido do Planalto das Missões (14,76%) e do Planalto da Campanha (12,60%).

A **Figura 4** expõe as unidades geomorfológicas da área de operação da CORSAN, ilustra a variedade de formações de relevo presentes na região, como planícies, colinas e depressões, cada uma com implicações específicas para o planejamento urbano e ambiental.

O Quadro 3 apresenta as unidades geomorfológicas do município em estudo.

Quadro 3 - Unidades geomorfológicas do município.

Município	Unidades geomorfológicas	Cobertura territorial
	Corpo d'água continental	1,08%
Rosário do Sul	Depressão do Rio Ibicuí	39,87%
	Planalto da Campanha	38,52%
	Planícies Alúvio-coluvionares	20,53%

57°48'00,000"W 54°24'00,000"W 51°00'00,000"W LEGENDA Municípios atendidos pela CORSAN Rio Grande do Sul Colinas Litorâneas - Coxilha das Lombas Corpo d'água continental Depressão do Rio Ibicuí Depressão do Rio Jacuí Planalto da Campanha 30°00'00'00"S Planalto Dissecado do Río Uruguai Planalto dos Campos Gerais Planície Lagunar Patos-Mirim Planícies Alúvio-coluvionares Planícies Litorâneas Serra Geral 32°30'00,000"S 32°30'00,000"S 75 150 km BASE: BANCO DE DADOS E INFORMAÇÕES AMBIENTAIS (1BGE, 2024) SISTEMAS DE COORDENADAS GEOGRÁFICAS, DATUM SIRGAS 2000 57°48′00,000″W 51°00′00,000″W 54°24′00,000"W

Figura 4 – Unidades geomorfológicas da região dos municípios atendidos pela CORSAN.

2.2.3. Hidrografia

A hidrografia, estudo das águas presentes na superfície terrestre, desempenha um papel crucial na gestão ambiental. O manejo sustentável das águas urbanas é fundamental, pois busca aproximar a população dos recursos hídricos de forma a melhorar o convívio ao redor desses corpos d'água.

2.2.3.1. Regiões hidrográficas

As Regiões Hidrográficas são divisões territoriais fundamentais para o gerenciamento dos recursos hídricos, pois consideram as características físicas, econômicas, sociais e ambientais de cada localidade, respeitando suas individualidades.

Segundo a Lei Estadual n°10.350/1994, o Estado do Rio Grande do Sul é dividido em 3 (três) Regiões Hidrográficas: Região Hidrográfica da Bacia do Rio Uruguai, Região Hidrográfica da Bacia do Guaíba e a Região Hidrográfica do Litoral. Dentro dessas regiões, estão inseridas as 25 Bacias Hidrográficas do estado.

53°24′00,000"W 48°57′00,000"W 57°51'00,000"W LEGENDA Municípios atendidos pela CORSAN Regiões Hidrográficas (e suas Bacias Hidrográficas) Região Hidrográfica do Guaíba Região Hidrográfica do Litoral Região Hidrográfica do Uruguai U090 U040 29°09'00,000"S 29°09′00'000"S G050 G040 G030 G090 G020 G010 G060 G070 G080 L030 31°48'00,000"S U080 L040 150 km BASE: BANCO DE DADOS E INFORMAÇÕES AMBIENTAIS (IBGE, 2024) SISTEMAS DE COORDENADAS GEOGRÁFICAS, DATUM SIRGAS 2000 57°51′00,000″W 53°24'00,000"W 48°57'00,000"W

Figura 5 – Regiões Hidrográficas do Rio Grande do Sul.

Conforme apresentado na **Figura 5**, as Bacias Hidrográficas possuem códigos de identificação. O **Quadro 4** relaciona as respectivas bacias com seus códigos e suas áreas correspondentes.

Quadro 4 – Áreas das Regiões e Bacias Hidrográficas do Rio Grande Sul.

Região Hidrográfica	Bacia Hidrográfica	Código	Área (km²)
Gravataí		G10	2.008,93
	Sinos	G20	3.680,04
	Caí	G30	4.957,74
	Taquari - Antas	G40	26.323,76
Guaíba	Alto Jacuí	G50	13.037,20
Guaiba	Vacacaí – Vacacaí Mirim	G60	11.085,77
	Baixo Jacuí	G70	17.370,48
	Lago Guaíba	G80	2.459,91
	Pardo	G90	3.631,24
	Total	9 bacias	84.555,07
	Tramandaí	L10	2.745,73
	Litoral Médio	L20	6.472,10
T.'. 1	Camaquã	L30	21.517,58
Litoral	Mirim -São Gonçalo	L40	25.666,83
	Mampituba	L50	683,76
	Total	5 bacias	57.085,98
	Apuaê - Inhandava	U10	14.510,51
	Passo Fundo	U20	4.847,25
	Turvo - Santa Rosa-Santo Cristo	U30	10.824,02
	Piratinim	U40	7.647,26
	Ibicuí	U50	35.041,38
Uruguai	Quarai	U60	6.658,78
Cruguai	Santa Maria	U70	15.665,92
	Negro	U80	3.005,24
	Ijuí	U90	10.704,60
	Várzea	U100	9.508,42
	Butuí-Icamaquã	U110	8.025,76
	Total	11 bacias	126.439,14

Fonte: Elaboração própria (2024); PERH-RS (2007).

O município em estudo está situado na Região Hidrográfica e na Bacia Hidrográfica apresentadas no **Quadro 5.**

Quadro 5 - Região e Bacia Hidrográfica do município.

Município	Região Hidrográfica	Bacia Hidrográfica
Rosário do Sul	Uruguai	Santa Maria

Fonte: Elaboração própria (2024).

A seguir, essas informações serão detalhadas.

2.2.3.1.1. Região Hidrográfica do Uruguai

A Região Hidrográfica do Uruguai está localizada nas porções norte e oeste do Estado do RS. Ocupando uma área próxima de 127 mil km² (SEMA, 2007), representa cerca de 57% da área do Estado e contempla 210 municípios. O **Quadro 6** apresenta as Bacias Hidrográficas desta Região, bem como os respectivos municípios abrangidos neste Plano Regional.

Quadro 6 – Relação dos municípios por Bacia Hidrográfica na Região Hidrográfica do Uruguai.

Bacia Hidrográfica	Municípios	
	Água Santa, Aratiba, Áurea, Barracão, Bom Jesus, Cacique Doble, Caseiros,	
	Erechim, Esmeralda, Gaurama, Getúlio Vargas, Ibiaçá, Lagoa Vermelha,	
Apuaê-Inhandava	Machadinho, Marcelino Ramos, Mariano Moro, Maximiliano de Almeida, Paim	
	Filho, Sananduva, Santo Expedito do Sul, São João da Urtiga, São José do Ouro,	
	São José dos Ausentes, Severiano de Almeida, Tapejara, Vacaria, Viadutos.	
	Barão de Cotegipe, Campinas do Sul, Entre Rios do Sul, Erebango, Erval	
Passo Fundo	Grande, Estação, Faxinalzinho, Itatiba do Sul, Jacutinga, Nonoai, Rio dos	
	Índios, Ronda Alta, São Valentim, Sertão.	
	Alecrim, Boa Vista do Buricá, Bom Progresso, Braga, Campina das Missões,	
	Campo Novo, Cândido Godói, Chiapetta, Coronel Bicaco, Crissiumal,	
Turvo - Santa	Derrubadas, Doutor Maurício Cardoso, Giruá, Horizontina, Humaitá,	
Rosa – Santo Cristo	Independência, Inhacorá, Miraguaí, Porto Lucena, Porto Xavier, Santa Rosa,	
	Santo Augusto, Santo Cristo, São José do Inhacorá, São Martinho, Sede Nova,	
	Tiradentes do Sul, Três de Maio, Três Passos, Tucunduva, Tuparendi.	
D: .: :	Bossoroca, Santo Antônio das Missões, São Luiz Gonzaga, São Miguel das	
Piratinim	Missões e São Nicolau.	
	Alegrete, Cacequi, Itaqui, Jaguari, Manoel Viana, Mata, Nova Esperança do Sul,	
Ibicuí	Santiago, São Francisco de Assis, São Pedro do Sul, São Vicente do Sul,	
	Tupanciretã, Unistalda.	
Quarai	Barra Do Quaraí, Quaraí.	

Bacia Hidrográfica	Municípios
Santa Maria	Dom Pedrito, Rosário do Sul.
Negro	-
Ijuí	Ajuricaba, Caibaté, Catuípe, Cerro Largo, Condor, Entre-Ijuís, Guarani das Missões, Ijuí, Panambi, Pejuçara, Santo Ângelo.
Várzea	Alpestre, Ametista do Sul, Barra do Guarita, Caiçara, Carazinho, Chapada, Constantina, Erval Seco, Frederico Westphalen, Iraí, Jaboticaba, Liberato Salzano, Palmeira das Missões, Palmitinho, Pinheirinho do Vale, Planalto, Redentora, Rodeio Bonito, Rondinha, Sarandi, Seberi, Taquaruçu do Sul, Tenente Portela, Trindade do Sul, Vicente Dutra, Vista Alegre e Vista Gaúcha.
Butuí –Icamaquã	Maçambará e São Borja

Fonte: Elaboração própria (2024). PERH-RS (2007).

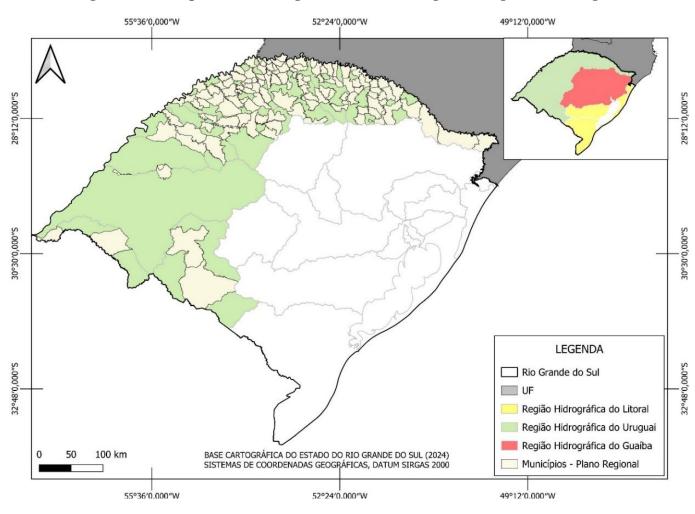


Figura 6 - Municípios do Plano Regional inseridos na Região Hidrográfica do Uruguai.

Fonte: Elaboração própria (2024). PLANESAN (2021); Base Cartográfica do Estado do Rio Grande do Sul (2024).

No **Quadro 7** é apresentada a população urbana residente nesta Região Hidrográfica, de acordo com as taxas de urbanização apresentadas no Plano Estadual de Saneamento. Vale ressaltar que não há informações sobre a Bacia Hidrográfica do Rio Negro, pois os municípios pertencentes a ela não são contemplados por este Plano Regional.

Quadro 7 - População urbana residente na Região Hidrográfica do Uruguai.

Bacia Hidrográfica	População Urbana	População Total	Taxa de Urbanização	População Urbana na Bacia Hidrográfica
Apuaê-Inhandava	284.668	351.657	81,4%	286.249
Passo Fundo	46.534	72.881	68,7%	50.069
Turvo – Santa Rosa – Santo Cristo	218.611	317.279	70%	222.095
Piratinim	46.911	63.116	72%	45.444
Ibicuí	214.081	258.507	85,4%	220.765
Quarai	24.755	27.741	89,3%	24.773
Santa Maria	65.742	73.611	89,1%	65.587
Negro	-	-	-	-
Ijuí	227.759	265.739	82,4%	218.969
Várzea	231.788	341.757	70,6%	241.280
Butuí –Icamaquã	54.577	64.101	83,6%	53.588
Total	1.415.426	1.836.389	-	1.428.820

Fonte: Elaboração própria (2024). IBGE (2022); PLANESAN (2021).

Os principais cursos d'água da Região Hidrográfica do Uruguai, bem como os principais usos da água estão apresentados no **Quadro 8**.

Quadro 8 – Cursos d'água da Região Hidrográfica do Uruguai e principais usos.

Bacia Hidrográfica	Cursos D'água	Principais Usos da Água		
Apuaê e Inhandava	Rios Apuaê, Inhandava, Cerquinha, Pelotas, Arroio Poatã e o Rio Uruguai.	Abastecimento público.		
Passo Fundo	Arroio Timbó e o Rio Passo Fundo	Dessedentação animal, irrigação, uso industrial e abastecimento público.		
Rios Turvo, Santa Rosa e	Rios Turvo, Santa Rosa, Santo Cristo,	Dessedentação animal, abastecimento		
Santo Cristo	Amandaú e Comandai.	público e irrigação		
Piratinim	Arroios Inhacapetum, Itu, Chuní, Ximbocú e o Rio Piratinim.	Irrigação, dessedentação animal e abastecimento público.		
Ibicuí	Rios Ibicuí, Itu, Ibirapuitã, Jaguari e um trecho do rio Uruguai.	Principalmente irrigação.		

Bacia Hidrográfica	Cursos D'água	Principais Usos da Água
Quaraí	Arroios Moirões, Sarandi, Quaraímirim, Garupa, Capivari e o Rio Quaraí.	Principalmente irrigação.
Santa Maria	Arroios Três Divisas, da Divisa, da Cruz e os rios Santa Maria, Cacequi e Upamaroti. O rio Santa desemboca no rio Ibicuí.	Principalmente irrigação.
Negro	Arroios Piraí, Piraizinho, Balé e o Rio Negro.	Irrigação, abastecimento público e dessedentação animal.
Ijuí	Rios Caxambu, Potiribu, Conceição, Ijuizinho e o Rio Ijuí.	Irrigação e abastecimento público
Rio da Várzea	Arroios Sarandi, Goizinho e os rios da Várzea, Porã, Barraca, do Mel,Guarita e Ogaratim.	Irrigação, a dessedentação animal e ao abastecimento público

Fonte: Elaboração própria (2024). SEMA (2020)

Os principais rios da Região Hidrográfica do Uruguai estão apresentados na **Figura 7**, tendo seus respectivos enquadramentos pela Resolução de Enquadramento do CRH apresentados na **Figura 8**.

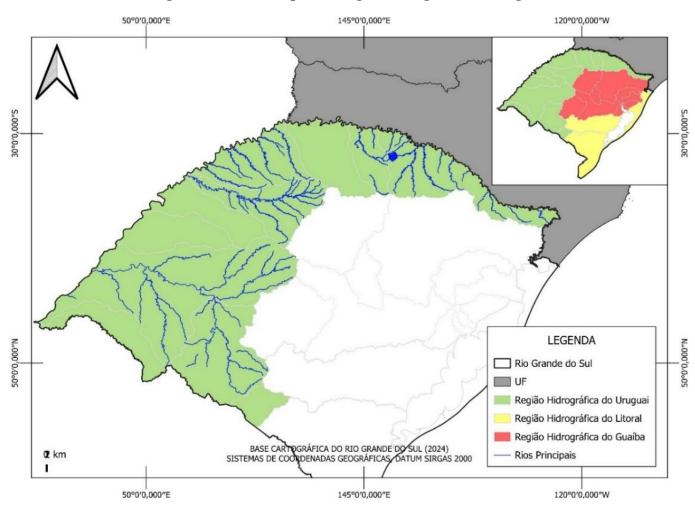


Figura 7 – Rios Principais da Região Hidrográfica do Uruguai.

Fonte: Elaboração própria (2024). Base Cartográfica do Rio Grande do Sul (2024).

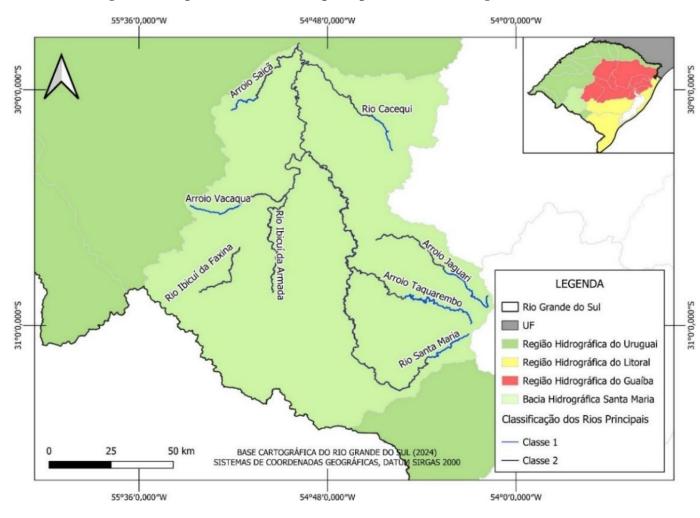


Figura 8 – Enquadramento dos rios principais na Bacia Hidrográfica Santa Maria.

Fonte: Elaboração própria (2024). Base Cartográfica do Rio Grande do Sul (2024).

2.2.3.2. Disponibilidade, demanda e balanço hídrico

2.2.3.2.1. Recursos hídricos subterrâneos

2.2.3.2.1.1. Disponibilidade hídrica

A disponibilidade hídrica refere-se à quantidade e qualidade de água acessível em determinado local para diversos usos.

Conforme o Relatório Anual sobre a Situação dos Recursos Hídricos no Estado do Rio Grande do Sul (2021), a quantificação da disponibilidade hídrica subterrânea ainda enfrenta desafios. Isso se deve ao fato de que os estudos sobre águas subterrâneas são restritos à área acadêmica. Além disso, a outorga dos poços considera apenas o ensaio de bombeamento individual de cada intervenção, sem uma abordagem abrangente que contemple o aquífero em sua totalidade.

No Rio Grande do Sul são identificados 21 aquíferos, caracterizados no **Quadro 9** e apresentados na **Figura 9.**

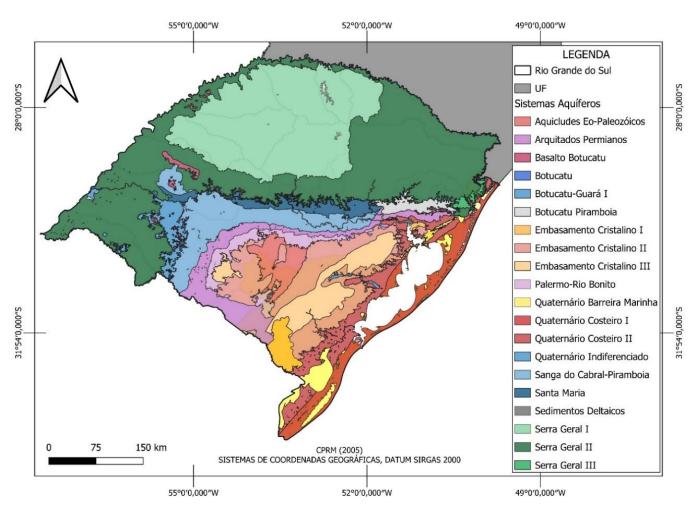


Figura 9 – Sistemas Aquíferos do Rio Grande do Sul.

Fonte: Elaboração própria (2024). CPRM (2005).

Quadro 9 – Aquíferos do Estado do Rio Grande do Sul.

Aquífero	Porcentagem de área no RS	Descrição
Sistema Aquífero Serra Geral II - (sg2)	32,81%	O Sistema Aquífero Serra Geral I está localizado na parte oeste do Estado, próximo aos limites das rochas vulcânicas com o rio Uruguai, incluindo extensas áreas associadas aos derrames da Unidade Hidroestratigráfica Serra Geral. Sua litologia é predominantemente composta por riolitos, riodacitos e basaltos fraturados em menor proporção. A capacidade específica geralmente é baixa, em torno de 0,5 m³/h/m, com exceções em áreas de fraturas que podem chegar a 2 m³/h/m. As salinidades são geralmente baixas, frequentemente inferiores a 250 mg/l.
Sistema Aquífero Serra Geral I – (sg1)	21,09%	O Sistema Aquífero Serra Geral I está na parte centro-oeste do planalto rio-grandense, abrangendo municípios como Soledade, Tupanciretã, Santo Antônio das Missões, Santa Rosa, Tenente Portela, Nonoai, Erechim e Passo Fundo. Sua litologia é basáltica, com formações amigdalóides e fraturadas, cobertas por solo avermelhado espesso. A capacidade específica varia de 1 a 4 m³/h/m, às vezes excedendo 4 m³/h/m, e as salinidades são geralmente inferiores a 220 mg/l.
Sistema Aquífero Embasamento Cristalino II – (ec2)	8,35%	O Aquífero Embasamento Cristalino II abrange áreas nos limites do embasamento cristalino, incluindo municípios como Bagé, Caçapava do Sul, Encruzilhada do Sul e uma pequena parte de Porto Alegre. Sua litologia é composta por rochas graníticas, gnáissicas, andesíticas, xistos, filitos e calcários metamorfizados, frequentemente afetadas por fraturas e falhas. As capacidades específicas são geralmente inferiores a 0,5 m³/h/m, e as salinidades são menores que 300 mg/l.
Sistema Aquífero Sanga do Cabral/Pirambóia – (sp)	6,37%	O Aquífero Sanga do Cabral/Pirambóia aflora desde a fronteira com o Uruguai até a região de Taquari. Sua litologia inclui camadas síltico-arenosas avermelhadas com matriz argilosa e arenitos finos a muito finos, avermelhados, com cimento calcífero. As capacidades específicas variam de 0,5 a 1,5 m³/h/m. A salinidade varia de 100 mg/l em áreas aflorantes a mais de 300 mg/l em áreas confinadas. No centro do Estado, são encontradas salinidades muito altas, de 3000 a 5000 mg/l.
Sistema Aquitardos Permianos – (ap)	4,79%	O Sistema Aquitardos Permianos está localizado em uma estreita faixa na depressão periférica, circundando o embasamento cristalino do sul ao leste do Estado, de Candiota a Taquara. Sua litologia inclui siltitos argilosos, argilitos cinza-escuros, folhelhos pirobetuminosos e pequenas camadas de margas e arenitos. As capacidades específicas são geralmente inferiores a 0,1 m³/h/m. A água pode ser dura, com alta concentração de sais de cálcio e magnésio.
Sistema Aquífero Quaternário Costeiro II – (qc2)	4,70%	O Sistema Aquífero Quaternário Costeiro II ocorre nos sedimentos da planície costeira, estendendo-se de Santa Vitória do Palmar até Torres. Sua litologia é principalmente composta por sucessões de areias finas inconsolidadas, esbranquiçadas, com intercalações de argila cinza e camadas pelíticas cimentadas. As capacidades específicas variam de 0,5 a 1,5 m³/h/m. Os sólidos totais dissolvidos apresentam variação entre 600 e 2000 mg/l.
Sistema Aquífero Embasamento Cristalino III – (ec3)	4,51%	O Aquífero Embasamento Cristalino III está nas áreas elevadas do escudo cristalino, com litologia de rochas graníticas, gnaisses, riolitos e andesitos pouco alterados. Devido à ausência de fraturas, há baixa disponibilidade para perfuração de poços.

Aquífero	Porcentagem de área no RS	Descrição
Sistema Aquífero Quaternário Costeiro I – (qc1)	4,02%	O Sistema Aquífero Quaternário Costeiro I abrange todos os aquíferos associados aos sedimentos da planície costeira do Estado, estendendose do Chuí até Torres. Sua litologia consiste em camadas inconsolidadas de areia fina a média, esbranquiçada, intercaladas com camadas síltico-arenosas e argilosas. As capacidades específicas são geralmente altas, frequentemente ultrapassando 4 m³/h/m, e as salinidades são inferiores a 400 mg/l, embora ocasionalmente possam ocorrer águas cloretadas com maior salinidade.
Sistema Aquífero Palermo/Rio Bonito - (pr)	2,30%	O Aquífero Palermo/Rio Bonito circunda a região alta do embasamento cristalino, de Candiota até Santo Antônio da Patrulha. Sua litologia é composta por arenitos finos a médios, cinza esbranquiçados, intercalados com camadas de siltito argiloso e carbonosos cinza-escuros. As capacidades específicas são baixas, inferiores a 0,5 m³/h/m, e a salinidade varia de 800 a 1500 mg/l.
Sistema Aquífero Santa Maria – (sm)	2,21%	O Aquífero Santa Maria aflora na região central do Estado, entre Mata e Taquari. Sua litologia inclui arenitos grossos a conglomeráticos na base, lamitos avermelhados, siltitos e arenitos finos a médios no topo. As capacidades específicas variam de 0,5 a 1 m³/h/m em áreas aflorantes e podem atingir 4 m³/h/m em áreas confinadas. A salinidade varia de 50 a 500 mg/l, mas pode ultrapassar 2000 mg/l em áreas confinadas, com teores de flúor acima do limite potável.
Sistema Aquicludes Eo-Paleozóicos – (ep)	2,19%	Os Aquicludes Eo-Paleozóicos estão localizados no centro ao leste do embasamento cristalino, entre Caçapava do Sul, Bagé, Lavras do Sul e Vila Nova do Sul. Sua litologia é composta por arenitos finos a médios, róseos e avermelhados, extremamente endurecidos por cimentos ferruginosos, calcíticos e silicosos, o que resulta em baixa porosidade e impermeabilização da rocha, impedindo vazões significativas de água.
Sistema aquífero Botucatu/Guara I – (bg1)	1,92%	O Aquífero Botucatu/Guará I aflora na fronteira oeste, entre Santana do Livramento e Jaguari. Sua litologia é principalmente composta por arenitos médios a finos, quartzosos, róseos e avermelhados, com intercalações pélticas e cimento argiloso na unidade Guará. As capacidades específicas variam de 1 a 3 m³/h/m nas áreas aflorantes, com sólidos dissolvidos totais geralmente abaixo de 250 mg/l. Nas áreas confinadas (Santana do Livramento, Alegrete, Uruguaiana, Itaqui e São Borja), as capacidades específicas ultrapassam 4 m³/h/m, podendo chegar até 10 m³/h/m, e os sólidos totais dissolvidos variam de 250 a 400 mg/l.
Sistema Aquífero Embasamento Cristalino I – (ec1)	1,30%	O Sistema Aquífero Embasamento Cristalino I está localizado na região sul do Rio Grande do Sul, entre Jaguarão e Pinheiro Machado, e também no nordeste do escudo sul-riograndense em Porto Alegre. Caracteriza-se por granitos e basaltos muito fraturados na fronteira com o Uruguai. As capacidades específicas são geralmente inferiores a 0,5 m³/h/m, e a salinidade raramente excede 200 mg/l.
Sistema Aquífero Botucatu/Pirambóia – (bp)	1,14%	O Sistema Aquífero Botucatu/Pirambóia abrange principalmente a área entre Taquari e Santo Antônio da Patrulha, na Região Metropolitana de Porto Alegre. Composto por arenitos médios e endurecidos, sua litologia apresenta condições desfavoráveis para armazenamento de água. Os arenitos finos são muito argilosos, resultando em baixas capacidades específicas, cerca de 0,5 m³/h/m, e salinidades inferiores a 250 mg/l.

Aquífero	Porcentagem de área no RS	Descrição
Sistema Aquífero Basalto/Botucatu – (bb)	0,80%	O Sistema Aquífero Basalto/Botucatu está situado entre a fronteira oeste e a região das missões, abrangendo morros de basalto sobre arenitos da Unidade Hidroestratigráfica Botucatu. Essas áreas são muito desfavoráveis para armazenamento de água subterrânea, resultando em poços secos ou com vazões muito baixas.
Sistema Aquífero Botucatu/Guará II – (bg2)	0,61%	O Sistema Aquífero Botucatu/Guará II está localizado na região oeste do Estado, incluindo municípios como Manoel Viana, São Francisco de Assis, Maçambará e Itaqui. Sua litologia é composta por arenitos finos a médios, róseos a avermelhados, com intercalações síltico-arenosas. As capacidades específicas são geralmente baixas, inferiores a 0,5 m³/h/m, e os sólidos dissolvidos totais raramente ultrapassam 150 mg/l.
Sistema Aquífero Serra Geral III – (sg3)	0,28%	O Sistema Aquífero Serra Geral III está localizado nas partes elevadas da unidade Serra Geral, na região Litorânea e em morros isolados de basalto no noroeste do Estado. A litologia varia de ácida (riolitos e riodacitos) a básica (basaltos). A perfuração de poços nessas áreas não é recomendada.
Sistema Aquífero Quaternário Barreira Marinha – (bm)	0,22%	O Sistema Aquífero Quaternário Barreira Marinha abrange uma faixa estreita do nordeste, da Barra do Ribeiro ao oeste do Lago Guaíba até Santo Antônio da Patrulha a leste. Composto por areias inconsolidadas de granulometria fina a média, suas capacidades específicas são altas, acima de 4 m³/h/m, e o teor salino é muito baixo, inferior a 50 mg/l.
Sistema Aquífero Botucatu – (bt)	0,20%	O Sistema Aquífero Botucatu está localizado principalmente na região central do Estado, próximo às bordas escarpadas do planalto basáltico. Composto por arenitos de granulometria média endurecidos por cimento ferruginoso ou silicoso, essa litologia é ineficaz no armazenamento de água, resultando em poços geralmente secos.
Sistema Aquífero Quaternário Indiferenciado – (qi)	0,13%	O Sistema Aquífero Quaternário Indiferenciado está localizado na calha do Rio Camaquã, entre Cristal e Amaral Ferrador. Sua litologia é composta principalmente por areias grossas e cascalhos inconsolidados, resultantes da erosão de rochas graníticas e eopaleozóicas. Possui alta capacidade específica, em média 4 m³/h/m, e baixa salinidade, em torno de 150 mg/l.
Sistema Aquífero Sedimentos Deltaicos – (sd)	0,04%	O Sistema Aquífero Sedimentos Deltaicos está localizado ao norte do Lago Guaíba, entre Porto Alegre e Eldorado do Sul, incluindo partes da planície de inundação. Composto por arenitos médios a grossos inconsolidados e camadas argilosas, frequentemente com seixos de basalto na base, possui capacidades específicas médias de 3 m³/h/m. No entanto, a qualidade da água é baixa, com muitos sais dissolvidos e altos teores de ferro.

Fonte: Elaboração própria (2024). SEMA (2022).

2.2.3.2.1.2. Demanda hídrica

De acordo com o Relatório Anual sobre a Situação dos Recursos Hídricos no Estado do Rio Grande do Sul (2021), o estado possui 8.123 poços regularizados, com captação de 549.708 m³/dia.

Segundo o levantamento realizado neste relatório de atualização, foram avaliadas as demandas hídricas por Bacia Hidrográfica e pelos aquíferos existentes no Rio Grande do Sul, abrangendo Autorizações Prévias, Outorgas e Dispensas de Outorgas autorizadas pelo DRHS/SEMA, além dos cadastros de poços aguardando análise dos técnicos da Divisão de Outorga. As demandas hídricas subterrâneas estão apresentadas nos **Quadro 10** e **Quadro 11**.

Quadro 10 – Demandas hídricas médias (em m³/dia) e nº de processos de águas subterrâneas nas bacias hidrográficas do Rio Grande do Sul.

		es prévias concedidas Outo		concedidas	Dispensas de outorgas concedidas		Cadastros aguardando análise	
Bacia hidrográfica	Vazão média (m³/dia)	N° de processos	Vazão média (m³/dia)	N° de processos	Vazão média (m³/dia)	N° de processos	Vazão média (m³/dia)	N° de processos
Gravataí	2.926	59	3.817	63	9	23	1.137	51
Sinos	5.990	160	4.148	117	23	47	2.982	117
Caí	16.405	523	5.270	115	5	55	3.121	122
Taquari-Antas	86.377	1.548	28.722	410	27	21	45.089	261
Alto Jacuí	23.124	201	6.214	96	6	3	4.865	37
Vacacaí-Vacacaí Mirim	3.296	161	1.315	36	1	25	5043	60
Baixo Jacuí	5.339	146	769	19	1	12	187	15
Lago Guaíba	19.700	25	2.736	32	2	2	1.310	10
Pardo	6.516	58	613	10	1	5	92	5
Tramandaí	22.342	66	866	69	8	6	147	18
Litoral Médio	2.719	22	1.804	32	13	13	286	18
Camaquã	2.844	50	334	6	2	2	101	8
Mirim-São Gonçalo	6.781	75	967	34	2	4	1.498	32
Mampituba	157	3	10	2	-	-	11	1
Apuaê-Inhandava	21.982	834	5.155	144	7	4	2.518	53
Passo Fundo	17.598	320	2.820	46	7	4	1.264	18
Turvo-Santa Rosa- Santo Cristo	13.470	369	3.386	83	7	5	42.476	28
Piratinim	12.831	71	433	12	-	-	43	1
Ibicuí	15.149	369	10.277	90	6	3	3650	21

Autorizações prévias concedio		révias concedidas	Outorgas concedidas		Dispensas de outorgas concedidas		Cadastros aguardando análise	
Bacia hidrográfica	Vazão média (m³/dia)	N° de processos	Vazão média (m³/dia)	N° de processos	Vazão média (m³/dia)	N° de processos	Vazão média (m³/dia)	N° de processos
Quaraí	1.912	30	22	4	1	1	12	5
Santa Maria	3.548	50	559	15	1	1	120	12
Negro	1.698	13.	481	7	-	-	652	6
Ijuí	12.027	253	3.151	96	2	1	12.408	40
Várzea	19.330	481	3.467	94	3	2	2.052	29
Butuí-lcamaqua	6.840	40	257	5	-	-	18	3
Total	330.903	5.927	87.592	1.637	133	239	131.080	971

Fonte: SEMA (2022).

Quadro 11 – Demandas hídricas médias (em m³/dia) e nº de processos de águas subterrâneas por sistema aquífero no Rio Grande do Sul.

	Autorizações prévias concedidas		Outorgas concedidas		Dispensas de outorgas concedidas		Cadastros aguardando análise	
Sistema Aquífero	Vazão média (m³/dia)	N° de processos	Vazão média (m³/dia)	N° de processos	Vazão média (m³/dia)	N° de processos	Vazão média (m³/dia)	N° de processos
Aquicludes Eo-Paleozóicos	40	6	11	1	-	1	-	2
Aquitardos permianos	1.275	265	2.343	54	12	50	1.245	81
Basalto / Botucatu	515	27	26	1	-	-	254	4
Botucatu	728	18	76	4	-	-	233	5
Botucatu / Guará I	5.829	54	1.041	14	-	-	231	2
Botucatu / Pirambóia	7.335	160	3.870	112	14	54	2.732	118
Embasamento Cristalino I	267	24	1560	39	-	-	284	17

	Autorizações prévias concedidas		Outorgas concedidas		Dispensas de outorgas concedidas		Cadastros aguardando análise	
Sistema Aquífero	Vazão média (m³/dia)	N° de processos	Vazão média (m³/dia)	N° de processos	Vazão média (m³/dia)	N° de processos	Vazão média (m³/dia)	N° de processos
Embasamento Cristalino II	3.275	78	815	26	1	2	530	23
Embasamento Cristalino III	1.534	41	49	3	1	1	68	14
Palermo / Rio Bonito	3.794	44	1.474	13	-	10	481	4
Quaternário Barreira Marinha	520	11	1.261	14	3	2	13	6
Quaternário Costeiro I	19.109	62	1.231	75	9	7	954	26
Quaternário Costeiro II	31.648	104	4.548	64	7	21	2.520	54
Quaternário Indiferenciado	-	-	-	-	-	-	-	-
Sanga do Cabral / Pirambóia	5.878	152	3.905	14	1	25	145	12
Santa Maria	12.778	158	1.646	49	-	4	5.209	59
Serra Geral	107.000	2.072	21.564	470	24	15	64.125	173
Serra Geral II	127.999	2.633	41.856	677	56	39	51.899	368
Serra Geral III	243	5	-	-	-	-	-	-
Total	329.766	5.914	87.276	1.630	127	231	130.924	968

Fonte: SEMA (2022).

2.2.3.2.2. Recursos hídricos superficiais

2.2.3.2.2.1. Disponibilidade hídrica

A disponibilidade hídrica para fins de gestão de cursos hídricos superficiais deve ser avaliada em função de vazões de referência.

Quadro 12 – Disponibilidade hídrica nas Bacias Hidrográficas do Estado do Rio Grande do Sul.

Bacia Hidrográfica	Descrição	Vazão de referência (m³/s)	Vazão outorgável (m³/s)
Gravataí	Exutório do Rio Gravataí no Lago Guaíba	10,4	5,20
Sinos	Exutório do Rio dos Sinos no Lago Guaíba	20	14,00
Caí	Exutório do Rio Caí no Lago Guaíba	21,06	10,53
Taquari-Antas	Exutório do Rio Taquari no Rio Jacuí	45,97	22,98
Alto Jacuí	Soma dos Rios Jacuí e Jacuizinho	121,33	60,66
Vacacaí-Vacacaí Mirim	Soma dos rios Vacacaí e Vacacaí-Mirim	29,03	14,52
Baixo Jacuí	Exutório do Rio Jacuí no Lago Guaíba	424,13	254,48
Lago Guaíba	Soma dos afluentes diretos ao Lago Guaíba, incluindo Gravataí, Sinos, Caí e Jacuí	487,48	292,53
Pardo	Exutório do Rio Pardo no Rio Jacuí	8,59	4,29
Tramandaí	Soma dos rios Maquiné e Três Forquilhas	7,4	3,70
Camaquã	Soma do Rio Camaquã e Arroios Turuçu e Velhaco	65,41	39,82
Mirim São Gonçalo	Soma dos Arroios Grande e Del Rei e Rio Piratini	15,48	7,74
Mampituba	Exutório da UPG Forno-Jacaré no Rio Mampituba	2,48	1,24
Apuaê-Inhandava	Total da Bacia Hidrográfica dos Rios Apuaê- Inhandava (soma dos rios Dourado, do Silveira, Socorro, Cerquinha, dos Touros, Santana, Bernardo José, Inhandava e Apuaê)	45,61	22,81
Passo Fundo	Soma da UPG Passo Fundo Baixo e UPG Douradinho	26,58	13,29
Turvo-Santa Rosa- Santo Cristo	Total da Bacia Hidrográfica dos Rios Turvo- Santa Rosa-Santo Cristo (soma dos rios Amandaú, Lajeado Grande, Santo Cristo, Santa Rosa, Comandaí, Turbo e Buricá))	49,43	24,72
Piratinim	Exutório do Rio Piratini no Rio Uruguai	16,98	8,49
Ibicuí	Exutório do Rio Ibicuí no Rio Uruguai	138,32	96,83
Quaraí	Soma dos arroios Sarandi II e Garupa e sangas Sarandi e do Salso	8,72	4,36

Bacia Hidrográfica	Descrição	Vazão de referência (m³/s)	Vazão outorgável (m³/s)
Santa Maria	Exutório do Rio Santa Maria no Rio Ibicuí	23,04	11,52
Negro	Exutório do Rio Negro na fronteira Brasil- Uruguai	2,49	1,24
Ijuí	Exutório do Rio Ijuí no Rio Uruguai	62,6	31,30
Várzea	Várzea Soma dos rios Guarita e da Várzea		17,84
Butuí-Icamaquã Soma do Arroio Butuí e do Rio Icamaquã		27,86	13,93
	Total	992,52	579,83

Fonte: Elaboração própria (2024). SEMA (2022).

2.2.3.2.2. Demanda hídrica

As demandas hídricas superficiais referem-se à necessidade de água proveniente das fontes de água superficial, como rios, lagos, e reservatórios, para diversos fins, como o abastecimento público, a geração de energia hidrelétrica, a irrigação agrícola, a navegação, a recreação, dentre outros.

A gestão eficaz das demandas hídricas superficiais é fundamental para garantir a disponibilidade adequada da água e para mitigar potenciais impactos associados ao seu uso intensivo. Os dados de demanda hídrica são importantes para a análise do balanço hídrico.

Conforme a análise detalhada no Relatório Anual sobre a Situação dos Recursos Hídricos no Estado do Rio Grande do Sul (2021), a demanda hídrica superficial total do estado é estimada em 106,25 m³/s. Destacam-se como as bacias com maior demanda as Bacias Hidrográficas Ibicuí, Baixo Jacuí e Piratinim. Por outro lado, as bacias com menor demanda incluem as do Litoral Médio, Negro, Lago Guaíba e Mampituba. No **Quadro** 13 estão representadas as demandas hídricas em m³/s de cada Bacia Hidrográfica.

Quadro 13 - Demandas hídricas médias superficiais nas bacias hidrográficas do Estado.

Bacia Hidrográfica	Vazão média (m³/s)
Gravataí	4,47
Sinos	4,85
Caí	3,88

Bacia Hidrográfica	Vazão média (m³/s)
Taquari-Antas	5,16
Alta Jacuí	7,87
Vacacaí-Vacacai Mirim	0,75
Baixo Jacui	9,54
Lago Guaíba	0,19
Pardo	0,57
Tramandaí	0,98
Litoral Médio	3,06
Camaquã	5,28
Mirim São Gonçalo	4,47
Mampituba	0,30
Apuê-Inhandava	3,96
Passo Fundo	0,52
Turvo-Santa Rosa-Santo Cristo	3,02
Piratinim	7,17
Ibicuí	23,55
Quaraí	0,85
Santa Maria	0,80
Negro	0,05
Ijuí	4,52
Várzea	4,05
Butuí-lcamaquã	6,40
Total	106,25

Fonte: Elaboração própria (2024). SEMA (2022).

2.2.3.2.2.3. Balanço hídrico

Conforme apresentado no Relatório Anual sobre a Situação dos Recursos Hídricos no Estado do Rio Grande do Sul (2021), o balanço hídrico de referência para a gestão de recursos hídricos superficiais no Estado do Rio Grande do Sul avalia a disponibilidade e a demanda de água apresentadas anteriormente.

O objetivo é verificar se os usos registrados, considerados no balanço hídrico superficial, refletem a realidade de estresse hídrico nas bacias hidrográficas especiais ou regiões de

conflito. Além disso, busca-se identificar áreas do Estado com altas demandas hídricas em comparação com as vazões outorgáveis.

O **Quadro 14** apresenta o resultado do balanço hídrico realizado, considerando as disponibilidades hídricas para os exultórios das unidades de análise apresentadas, bem como as demandas hídricas.

Quadro 14 - Balanço hídrico nas Bacias Hidrográficas do Rio Grande do Sul.

Bacia Hidrográfica	Descrição	Demandas hídricas (m³/s)	Comprometimento da vazão outorgável
Gravataí	Total da Bacia Hidrográfica do Rio Gravataí (Exutório do Rio Gravataí no Lago Guaíba)	4,47	86%
Sinos	Total da Bacia Hidrográfica do Rio dos Sinos (Exutório do Rio dos Sinos no Lago Guaíba)	4,85	35%
Caí	Total da Bacia Hidrográfica do Rio Caí (Exutório do Rio Caí no Lago Guaíba)	3,88	37%
Taquari- Antas	Total da Bacia Hidrográfica do Rio Taquari-Antas (Exutório do Rio Taquari no Rio Jacuí)	5,16	22%
Alto Jacuí	Total da Bacia Hidrográfica do Alto Jacuí (soma dos Rios Jacuí e Jacuizinho)	7,86	13%
Vacacaí- Vacacaí Mirim	Total da Bacia Hidrográfica dos Rios Vacacaí — Vacacaí Mirim (soma dos rios Vacacaí e Vacacaí- Mirim)	0,75	5%
Baixo Jacuí	Total da Bacia Hidrográfica do Baixo Jacuí (Exutório do Rio Jacuí no Lago Guaíba)	23,72	9%
Lago Guaíba	Total da Bacia Hidrográfica do Lago Guaíba (soma dos afluentes diretos ao Lago Guaíba, incluindo Gravataí, Sinos, Caí e Jacuí)	37,1	13%
Pardo	Total da Bacia Hidrográfica do Rio Pardo (Exutório do Rio Pardo no Rio Jacuí)	0,57	13%
Tramandaí	Total da Bacia Hidrográfica do Rio Tramandaí (soma dos rios Maquiné e Três Forquilhas)	0,01	0%
Camaquã	Total da Bacia Hidrográfica do Rio Camaquã (soma do Rio Camaquã e Arroio Turuçu e Velhaco)	4,26	11%
Mirim São Gonçalo	Total da Bacia Hidrográfica da Lagoa Mirim e do Canal São Gonçalo (soma dos Arroios Grande e Del Rei e Rio Piratini)	3,25	42%
Mampituba	Exutório da UPG Forno-Jacaré no Rio Mampituba	0,27	21%
Apuaê- Inhandava	Total da Bacia Hidrográfica dos Rios Apuaê — Inhandava (soma dos rios Dourado, do Silveira, Socorro, Cerquinha, dos Touros, Santana, Bernardo José, Inhandava e Apuaê)	3,93	17%
Passo Fundo	Total da Bacia Hidrográfica do Rio Passo Fundo (soma da UPG Passo Fundo e UPG Douradinho)	0,52	4%
Turvo Santa Rosa —	Total da Bacia Hidrográfica dos Rios Turvo — Santa Rosa — Santo Cristo (soma dos rios Amandaú, Lajeado	3	12%

Bacia Hidrográfica	Descrição	Demandas hídricas (m³/s)	Comprometimento da vazão outorgável
Santa Rosa	Grande, Santo Cristo, Santa Rosa, Comandai, Turbo e		
— Santo	Buricá))		
Cristo			
Piratinim	Total da Bacia Hidrográfica do Rio Piratinim (Exutório	7,17	84%
	do Rio Piratini no Rio Uruguai)	.,	
Ibicuí	Total da Bacia Hidrogrihea do Rio Ibicuí (Exutório do	18,66	19%
101041	Rio Ibicuí no Rio Uruguai)	10,00	17,0
Ouaraí	Total da Bacia Hidrográfica do Rio Quaraí (soma dos	0	0%
Quarar	arroios Sarandi II e Garupa e sangas Sarandi e do Salso)		070
Santa Maria	Total da Bacia Hidrográfica do Rio Santa Maria	0,8	7%
Santa Maria	(Exutório do Rio Santa Maria no Rio Ibicuí)	0,0	7 70
Negro	Total da Bacia Hidrográfica do Rio Negro (Exutório do	0,05 4%	
Negro	Rio Negro na fronteira Brasil-Uruguai)	0,03	470
Ijuí	Total da Bacia Hidrográfica do Rio Ijuí (Exutório do	4,52	14%
Ijui	Rio Ijuí no Rio Uruguai)	4,52	1470
Várzea	Total da Bacia Hidrográfica do Rio da Várzea (soma	4,03	23%
V ai zea	dos rios Guarita e da Várzea)	4,03	2370
Butuí-	Total da Bacia Hidrográfica dos Rios Butuí – Icamaquã	5,75	41%
lcamaquã	(soma do Arroio Butuí e o Rio Icamaquã)	3,73	41%
	Total	92,51	16%

Fonte: Elaboração própria (2024). SEMA (2022).

2.2.3.2.2.4. Qualidade dos mananciais

A Fundação Estadual de Proteção Ambiental Henrique Luiz Roessler/RS (FEPAM) apresenta, em seu Relatório Técnico sobre a Qualidade da Água Superficial nas Regiões Hidrográficas do RS, análises qualiquantitativas de amostras de água coletadas em 2022.

A coleta da água a ser analisada ocorre em 221 estações de monitoramento, pertencentes à Rede de Monitoramento Básico do RS, com o objetivo de determinar as condições de qualidade da água superficial nos locais de elevado interesse socioambiental.

Nesta avaliação, foram analisados os seguintes parâmetros:

- Demanda Bioquímica de Oxigênio (DBO 5d, 20°C, mg/l de O2);
- Escherichia coli (NMP/100mL);
- Fósforo Total (mg/l de P);
- Nitrogênio Amoniacal (mg/l de NHx);
- Oxigênio dissolvido (mg/l de O2).

Os resultados foram classificados de acordo com os limites propostos pela resolução nº 357/2005 do CONAMA.

2.2.3.2.4.1. Região Hidrográfica do Uruguai

Foram obtidas 183 amostras da Região Hidrográfica do Uruguai. Nos quadros a seguir são apresentadas as classes de enquadramento das amostras, bem como os valores de referência correspondentes aos parâmetros avaliados.

No **Quadro 15** estão apresentadas as informações obtidas das análises quanto ao OD. Vale ressaltar que em 1 amostra não foram obtidos resultados por problemas analíticos.

Quadro 15 – Distribuição dos valores de Oxigênio Dissolvido por Classe de Uso da Água no conjunto de amostras da Região Hidrográfica do Uruguai.

Quantidade de Amostras	Enquadramento	Valor (mg/l)
158	Classe 1	>6
7	Classe 2	≥5
7	Classe 3	≥4
10	Classe 4	≥2

Fonte: Elaboração própria (2024). FEPAM (2023)

Os valores encontrados nas análises quanto à Demanda Bioquímica de Oxigênio (DBO) estão apresentados no **Quadro 16** . Vale ressaltar que a DBO de 10 amostras não foi determinada devido a problemas analíticos.

Quadro 16 — Distribuição dos valores de Demanda Bioquímica de Oxigênio por Classe de Uso da Água no conjunto de amostras da Região Hidrográfica do Uruguai.

Quantidade de Amostras	Enquadramento	Valor (mg/l)
164	Classe 1	≤3
6	Classe 2	≤5
3	Classe 3	≤10

Fonte: Elaboração própria (2024). FEPAM (2023).

Os valores encontrados nas análises quanto à existência de Escherichia coli estão apresentados no **Quadro 17**. Segundo a FEPAM, esta análise também apresentou problemas analíticos em 16 amostras.

Quadro 17 – Distribuição dos valores de Escherichia coli por Classe de Uso da Água no conjunto de amostras da Região Hidrográfica do Uruguai.

Quantidade de Amostras	Enquadramento	Valor (NMP/100ml)
64	Classe 1	≤160
59	Classe 2	≤800
34	Classe 3	≤3.200
10	Pior que Classe 3	> 3.200

Fonte: Elaboração própria (2024). FEPAM (2023).

Os valores encontrados nas análises quanto aos valores de Fósforo Total estão apresentados no **Quadro 18**. Segundo a FEPAM, 15 amostras não obtiveram resultados por problemas analíticos.

Quadro 18 – Distribuição dos valores de Fósforo Total por Classe de Uso da Água no conjunto de amostras da Região Hidrográfica do Uruguai.

Quantidade de Amostras	Enquadramento	Valor (mg/l P)
122	Classe 1	≤0,1
26	Classe 3	≤0,15
21	Pior que Classe 3	> 0,15

Fonte: Elaboração própria (2024). FEPAM (2023).

Os valores encontrados nas análises quanto aos valores de Nitrogênio Amoniacal estão apresentados no **Quadro 19**. Vale destacar que, segundo a FEPAM, 66 amostras não obtiveram resultados por problemas analíticos.

Quadro 19 – Distribuição dos valores de Nitrogênio Amoniacal por Classe de Uso da Água no conjunto de amostras da Região Hidrográfica do Uruguai.

Quantidade de Amostras	Enquadramento	Valor (mg/l N)
116	Classe 1	≤3,7
1	Classe 3	≤13,3

Fonte: Elaboração própria (2024). FEPAM (2023)

2.2.3.3. Segurança hídrica

O conceito de segurança hídrica é recente, sendo introduzido em meados de 2000 pela Global Water Partnership (GWP, 2000) e o World Water Council (WWC, 2000). A segurança hídrica também já foi definida como a disponibilidade de água suficiente e de qualidade a um preço acessível para atender às necessidades de curto e longo prazo, protegendo a saúde e bem-estar das comunidades (WITTER, WHITEFORD, 1999). Complementarmente, a definição da GWP (2000) acrescentou a importância da proteção do meio ambiente para se ter a garantir do fornecimento de água.

Atualmente, a definição mais aceita é a do Programa para a Água da Organização das Nações Unidas (UN-WATER, 2013) que define a segurança hídrica como a capacidade de garantir o acesso sustentável a água de qualidade adequada para sustento, bem-estar e desenvolvimento, proteger contra poluição e desastres hídricos, e preservar ecossistemas, em um ambiente de paz e estabilidade política. A definição recente destaca o aspecto geopolítico, refletindo preocupações com conflitos pelo acesso à água que causam deslocamentos populacionais e conflitos intergovernamentais. Além disso, a segurança hídrica deve ser ancorada em valores sociais e de justiça social, integrando a gestão democrática e participativa dos recursos hídricos (SAITO, 2018).

No Brasil, em 2019, tivemos o lançamento pelo Ministério de Desenvolvimento Regional (MDR) em conjunto com a Agência Nacional de Águas e Saneamento Básico (ANA), de um importante instrumento para a gestão da segurança hídrica, o Plano Nacional de Segurança Hídrica (PNSH).

O PNSH visa envolver várias esferas do governo em esforços conjuntos, e o plano aborda a segurança hídrica em quatro dimensões: humana, econômica, ecossistêmica e de resiliência, combinadas no Índice de Segurança Hídrica (ISH).

De forma sucinta, as dimensões humanas e econômicas quantificam os déficits de atendimento e os riscos, enquanto a ecossistêmica e de resiliência identificam as áreas críticas e as vulneráveis. E enquanto a dimensão social avalia a disponibilidade de água para abastecimento, a econômica foca nos setores agropecuário e industrial.

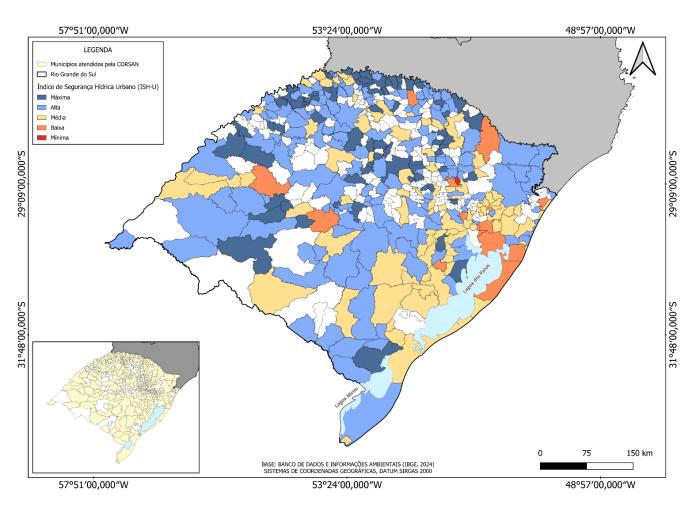
Ademais, a dimensão ecossistêmica usa indicadores de qualidade e quantidade de água, e a de resiliência analisa os estoques de água em situações de seca.

O ISH representa graficamente as condições de segurança hídrica, ajudando a orientar políticas públicas de infraestrutura e a gestão de recursos hídricos, e tendo sido calculado para os anos de 2017 e 2035.

As mudanças entre os cenários de 2017 e 2035 consideraram duas variáveis: as estimativas de demanda por água, conforme o Manual de Usos Consuntivos da Água no Brasil, afetando o balanço hídrico e indicadores relacionados; e a estimativa da população urbana, influenciando apenas a Dimensão Humana do Índice de Segurança Hídrica (ISH). Com isso, a segurança hídrica é integrada a diversas políticas públicas, incluindo o desenvolvimento regional, a defesa civil, a agricultura, a energia, os transportes e o meio ambiente (FIGUEIREDO, 2020).

Assim, foi lançado em 2021, o "Atlas Águas: Segurança Hídrica do Abastecimento Urbano" e que atualizou o Atlas de 2010 com conceitos do Plano Nacional de Segurança Hídrica (PNSH). Este documento visou caracterizar e diagnosticar os mananciais e os sistemas de abastecimento das sedes municipais brasileiras, e além de identificar as suas vulnerabilidades. Ele utiliza o Índice de Segurança Hídrica Urbano (ISH-U), que avalia a eficiência na produção e distribuição de água, combinando indicadores de vulnerabilidade dos mananciais, sistemas produtores, cobertura da rede de distribuição e gerenciamento de perdas.

Com isso, a **Figura 10** mostra a distribuição do ISH-U pelos municípios do operados pela CORSAN, onde pode se observar que a grande maioria dos municípios possui o ISH-U avaliado entre "Alto" e "Máximo", o que indica que esses municípios possuem uma combinação de uma maior disponibilidade hídrica natural junto a uma baixa pressão na demanda pelo abastecimento de água.


O Quadro 20 foca especificamente no município em estudo.

Quadro 20 – Índice de Segurança Hídrica Urbano do município.

Município	Índice de Segurança Hídrica Urbano
Rosário do Sul	Máxima

Figura 10 – Índice de Segurança Hídrica Urbano (ISH-U) dos municípios atendidos pela CORSAN.

2.3. Aspectos bióticos

O território brasileiro é composto por 6 (seis) biomas distintos: Amazônia, Caatinga, Cerrado, Pantanal, Mata Atlântica e Pampa. Cada bioma possui diferentes tipos de vegetação e fauna, e a conservação da vegetação é crucial para a manutenção dos hábitats, serviços ambientais e recursos essenciais à vida humana. Além disso, a preservação dos biomas depende de políticas públicas ambientais e de estratégias para a conservação, o seu uso sustentável e a manutenção dos serviços ambientais que eles fornecem a população.

O estado do Rio Grande do Sul abriga 2 (dois) desses biomas, a Mata Atlântica e o Pampa. A **Figura 11** mostra a distribuição dos biomas no estado, destacando que o bioma Pampa está mais presente no sudeste e sudoeste, enquanto a Mata Atlântica é predominante no nordeste e noroeste rio-grandense. Além disso, a região central e metropolitana do estado possui ambos os biomas distribuídos.

O Quadro 21 foca especificamente no município em estudo.

Quadro 21 - Bioma do município.

Município	Bioma	Cobertura territorial
Rosário do Sul	Pampa	100%%

57°51′00,000"W 53°24'00,000"W 48°57'00,000"W LEGENDA Municípios atendidos pela CORSAN Rio Grande do Sul Mata Atlântica Pampa 29°09'00,000"5 29°09′00,000″S 31°48′00,000″S 31°48'00,000"S 150 km BASE: BANCO DE DADOS E INFORMAÇÕES AMBIENTAIS (IBGE, 2024) SISTEMAS DE COORDENADAS GEOGRÁFICAS, DATUM SIRGAS 2000 57°51′00,000″W 53°24'00,000"W 48°57′00,000″W

Figura 11 – Distribuição de biomas ao longo dos municípios atendidos pela CORSAN.

2.4. Aspectos socioeconômicos

2.4.1. Aspectos sociais

Nesta seção, serão analisados os principais aspectos sociais do município, fundamentais para o entendimento das necessidades e peculiaridades locais que influenciam diretamente a gestão dos serviços de saneamento. Entre os itens abordados, destacam-se as características demográficas, que ajudam a compreender o crescimento populacional e sua distribuição territorial, além dos indicadores socioeconômicos, como o Índice de Desenvolvimento Humano Municipal, renda, educação e saúde.

Esses fatores, quando analisados em conjunto, permitem uma visão abrangente das condições de vida da população, auxiliando na identificação de áreas mais vulneráveis e prioritárias para o investimento em infraestrutura e serviços de saneamento. Com isso, busca-se criar uma base sólida para o planejamento de soluções que promovam a universalização do saneamento de forma equitativa e sustentável.

2.4.1.1. Demografia

A análise demográfica de uma região é um dos pilares fundamentais para o planejamento de políticas públicas, especialmente no campo do saneamento básico. Indicadores como a densidade populacional, estrutura etária, taxas de natalidade e migração fornecem subsídios importantes para a formulação de estratégias que visam atender às demandas atuais e futuras da população. Esses dados possibilitam uma visão mais clara das necessidades sociais e ajudam a definir prioridades de investimento em infraestrutura, educação, saúde e, no caso deste estudo, saneamento.

No estado do Rio Grande do Sul, observam-se mudanças demográficas significativas nos últimos anos. A redução da taxa de natalidade, acompanhada do aumento da expectativa de vida, reflete a transição demográfica vivida pela região, resultando em uma população gradualmente mais envelhecida. Esse cenário, por sua vez, impõe novos desafios ao planejamento urbano e à prestação de serviços, incluindo o saneamento, à medida que a demanda por infraestrutura de saúde e bem-estar aumenta.

A migração, tanto interna quanto externa, também tem um impacto relevante na distribuição e crescimento populacional, alterando as dinâmicas regionais e exigindo uma adaptação constante das políticas públicas.

Nesse contexto, o Censo Demográfico do IBGE emerge como uma ferramenta essencial para coletar dados atualizados e precisos sobre a população, oferecendo um retrato detalhado das condições socioeconômicas do país, além de ser uma base indispensável para o desenvolvimento de planos de saneamento eficientes.

Na **Figura 12**, é possível visualizar a tendencia da população total do município em estudo entre 1991 e 2022, com base nos dados disponibilizados pelo Censo do IBGE.

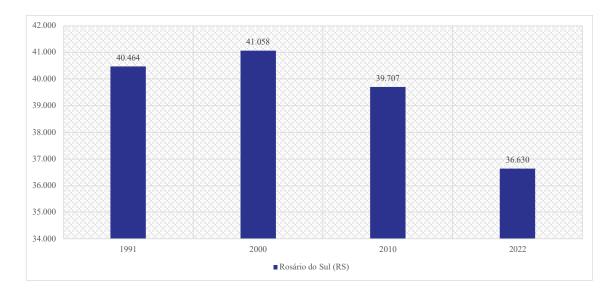
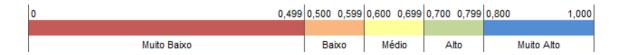


Figura 12 – Tendencia da população total do município (1991-2022).

Fonte: Adaptado da Série Histórica do IBGE (2023).

2.4.1.2. Índice de Desenvolvimento Humano

O Índice de Desenvolvimento Humano (IDH) foi criado em 1990 e passou a ser publicado anualmente a partir de 1993 pelo Programa das Nações Unidas para o Desenvolvimento (PNUD), órgão da ONU. Esse índice é utilizado para avaliar o desenvolvimento humano em diferentes países, bem como oferece uma visão abrangente das condições de vida, saúde, educação e renda em áreas urbanas específicas.



O IDH varia em uma escala que vai de 0 a 1, sendo que, quanto mais próximo de 1, maior o nível de desenvolvimento humano.

A escala de classificação do IDH divide-se em 5 (cinco) categorias, conforme mostrado na **Figura 13**: muito alto, alto, médio, baixo e muito baixo. Essas categorias facilitam a análise comparativa entre as nações, permitindo identificar desigualdades no desenvolvimento humano em diferentes regiões do mundo.

Figura 13 – Escala do IDH.

Fonte: Atlas Socioeconômico do Rio Grande do Sul (2020).

As dimensões que compõem o IDH-M são as seguintes:

- Renda: Refere-se ao padrão de vida, medido pela Renda Nacional Bruta (RNB) per capita, que indica o nível econômico médio de cada cidadão em um país;
- Saúde/Longevidade: Avalia a expectativa de vida ao nascer, representando o acesso da população a condições de vida saudáveis e à longevidade;
- Educação: Reflete o acesso ao conhecimento, considerando dois indicadores principais: a média de anos de escolaridade entre a população adulta e a expectativa de anos de estudo para crianças em idade de iniciar a vida escolar.

Essas 3 (três) dimensões fornecem uma visão integrada do desenvolvimento humano, indo além da simples análise econômica, ao incorporar aspectos relacionados à qualidade de vida e às oportunidades de acesso a serviços básicos.

No contexto do Rio Grande do Sul, o IDH desempenha um papel crucial na avaliação do progresso socioeconômico e na identificação de disparidades entre os municípios.

De acordo com o PNUD, o IDH do Rio Grande do Sul em 2021 foi de 0,771, colocando o estado na faixa de Desenvolvimento Humano Alto. A dimensão que mais contribuiu

para esse valor foi a longevidade, com 0,797, seguida pela renda, com 0,767, e pela educação, com 0,750.

O IDH também é utilizado como referência para avaliar o desenvolvimento em níveis mais locais, como cidades, estados e regiões, por meio do Índice de Desenvolvimento Humano Municipal (IDHM). O IDHM segue a mesma metodologia do IDH global, adaptando-se às especificidades municipais e regionais,

A **Figura 14** apresenta a tendência do IDHM no município em estudo, com dados referentes aos anos de 1991, 2000 e 2010. Essa evolução permite analisar o progresso do desenvolvimento humano na localidade ao longo dessas três décadas, destacando possíveis melhorias ou retrocessos nas áreas de renda, saúde e educação, que compõem o índice.

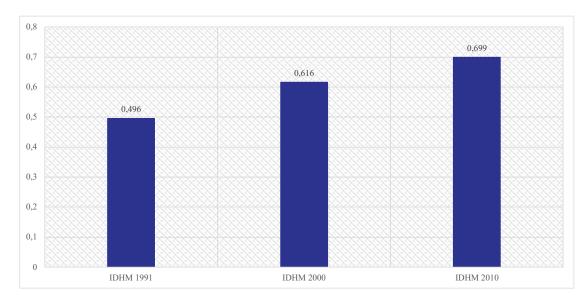


Figura 14 – Tendência histórica do IDHM no município.

Fonte: Adaptado de IBGE (2010).

O **Quadro 22** apresenta os dados referentes IDHM no ano de 2010, distribuídos entre os seus 3 (três) componentes principais: renda, longevidade e educação. Esses indicadores proporcionam uma análise detalhada do desenvolvimento humano no município, permitindo identificar as áreas em que houve maior progresso e aquelas que ainda demandam melhorias.

Quadro 22 – IDHM e seus componentes no município – 2010.

Município	IDHM 2010	IDHM Renda 2010	IDHM Longevidade 2010	IDHM Educação 2010
Rosário do Sul	0,699	0,705	0,841	0,576

Fonte: Adaptado do IBGE (2023).

2.4.1.3. Renda

O Índice de Gini mede a concentração da distribuição de renda em uma população, variando de 0 a 1. Um valor de zero indica igualdade absoluta, onde todos possuem a mesma renda, enquanto um valor de um indica extrema desigualdade, onde uma única pessoa detém toda a riqueza. Na prática, o índice de Gini costuma comparar os 20% mais pobres com os 20% mais ricos.

O **Quadro 23** apresenta a evolução do Indice de Gini do rendimento domiciliar per capita, a preços médios do ano para o Estado do Rio Grande do Sul. Observa-se uma redução de 2019 a 2023, indicando uma diminuição da desigualdade no estado.

Quadro 23 - Evolução do índice de Gini do estado do Rio Grande do Sul.

Estado	2015	2016	2017	2018	2019	2020	2021	2022	2023
Rio Grande do Sul	0,467	0,473	0,481	0,487	0,482	0,476	0,468	0,467	0,466

Fonte: Adaptado de IBGE (2024).

O **Quadro 24** apresenta a tendência histórica do Índice de Gini no município em estudo, com dados referentes aos anos de 1991, 2000 e 2010. Dessa forma, a análise desse indicador permite acompanhar a evolução da distribuição de renda no município ao longo dos anos.

Quadro 24 – Tendência histórica do Índice de Gini no município.

Município	1991	2000	2010
Rosário do Sul	0,5956	0,5451	0,5194

Fonte: IBGE/Censos Demográficos 1991, 2000 e 2010.

2.4.1.4. Saúde

Em 2023, o Ministério da Saúde registrou que o Rio Grande do Sul possui 153 municípios sem prestação de atendimento médico privado. Nessas áreas, a população depende exclusivamente dos serviços da rede pública de saúde. O estado, classificado como o sétimo com o maior número de estabelecimentos hospitalares, contava, em dezembro de 2023, com 332 desses estabelecimentos distribuídos por 226 dos 497 municípios. Entre esses hospitais, havia 21 especializados, 293 gerais e 18 de dia, conforme o Cadastro Nacional de Estabelecimentos de Saúde do DATASUS.

O panorama epidemiológico relacionado ao saneamento básico revela uma forte ligação entre as condições de saúde da população e a qualidade dos serviços de saneamento. Áreas com acesso inadequado à água potável, sistemas sanitários deficientes e gestão inadequada de resíduos enfrentam desafios significativos em termos de saúde pública, incluindo doenças transmitidas pela água e infecções gastrointestinais.

A Lista Morb. CID-10, disponível no DATASUS, oferece um detalhamento abrangente sobre a morbidade hospitalar no SUS, categorizada por local de internação. Esta base de dados é essencial para a análise epidemiológica e para o planejamento de intervenções de saúde pública, permitindo identificar padrões de doenças e sua distribuição geográfica. Utilizando essa fonte, coletamos informações específicas sobre "Doenças relacionadas ao saneamento (ambiental) inadequado (DRSAI)", listadas de acordo com SOUZA et al. (2015) da seguinte forma:

- Doenças de transmissão feco-oral:
 - o Diarreias;
 - o Febres entéricas;
 - Hepatite A;
- Doenças transmitidas por inseto vetor:
 - Dengue;
 - Febre Amarela;
 - Leishmanioses;
 - Filariose linfática:

- Malária;
- o Doença de Chagas;
- Doenças transmitidas através do contato com a água:
 - Esquistossomose;
 - o Leptospirose;
- Doenças relacionadas com a higiene
 - o Doenças dos olhos;
 - o Doenças de pele;
- Geohelmintos e teníases
 - Helmintíases;
 - Teníases.

Para o período de abril de 2024, foram registradas 1.936 internações no estado do Rio Grande do Sul relacionadas a diferentes DRSAI¹. Esse número abrange 176 municípios do estado, dos quais 155 são atendidos pela CORSAN.

A média de internações do município em estudo está apresentada no Quadro 25.

Quadro 25 – Média de internação por DRSAI em abril de 2024.

Município	População total (IBGE 2022)	Internações	Percentual de internações
Rosário do Sul	36.630	20	0,055%

Fonte: Adaptado de IBGE (2023) e DATASUS (2024).

¹ Cólera, Shiguelose, Amebíase, Diarreia e gastroenterite origem infecc presumível, Outras doenças infecciosas intestinais, Leptospirose icterohemorrágica, Outras formas de leptospirose, Leptospirose não especificada, Tracoma, Febre amarela, Dengue [dengue clásssico], Outras hepatites virais, Malária por Plasmodium falciparum, Malária por Plasmodium vivax, Malária por Plasmodium malariae, Outras formas malária conf exames parasitológ, Malária não especificada, Leishmaniose visceral, Leishmaniose cutânea, Leishmaniose cutâneo-mucosa, Leishmaniose não especificada, Esquistossomose, Equinococose, Ancilostomíase, Outras helmintíases, Outras doenças infecciosas e parasitárias.

2.4.1.5. Educação

Conforme informações disponibilizadas pelo IBGE 2023, a taxa de escolarização de 6 a 14 anos no estado do Rio grande do Sul era de 99,5%, enquanto a taxa de analfabetismo da população de 15 anos era de 2,7%.

Com base no censo do IBGE de 2022, foi possível identificar a média da taxa de alfabetização do município em estudo, conforme demonstrado no **Quadro 26**.

Quadro 26 – Taxa de alfabetização do município – 2022.

Município	Taxa de alfabetização (%)
Rosário do Sul	95,07

Fonte: Adaptado de IBGE (2022).

2.4.1.6. Uso e ocupação do solo

A definição do uso e ocupação do solo está diretamente ligada às regulamentações que governam a densidade populacional, as atividades permitidas, os mecanismos de controle das construções e a subdivisão do solo.

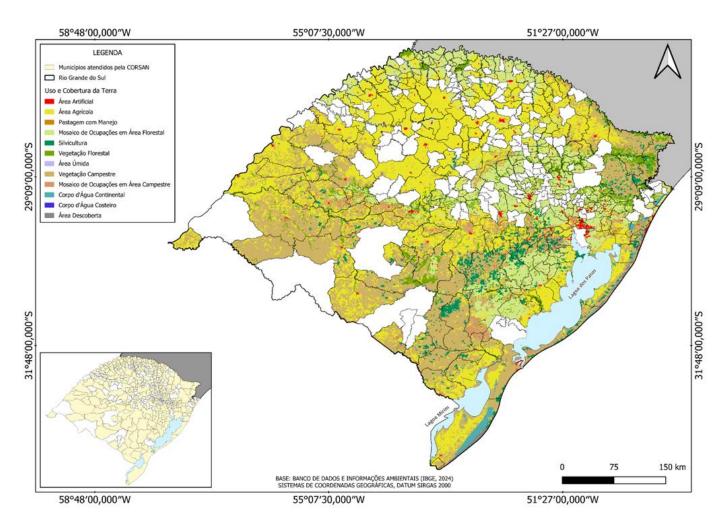
Esses componentes compõem o regime urbanístico, que visa garantir o desenvolvimento urbano de forma equilibrada e sustentável. Dentro desse contexto, uma das categorias essenciais é a classificação do território em zonas urbanas e rurais (VAZ, 2006).

De acordo com o Monitoramento da Cobertura e Uso da Terra conduzido pelo IBGE (2020), no estado do Rio Grande do Sul, o solo apresenta 11 (onze) categorias distintas. Segundo os dados, as classes predominantes nos municípios do estado são, em ordem de extensão maior, a categoria de "Área Agrícola", seguida pela categoria de "Vegetação Campestre", e então pela categoria de "Mosaico de Ocupações em Área Florestal", conforme ilustrado na **Figura 15**.

O **Quadro 27** também oferece uma descrição detalhada das categorias de uso e cobertura do solo.

Quadro 27 – Classificação uso e cobertura do solo.

Classificação	Descrição
Área artificial	Áreas onde predominam superfícies antrópicas não-agrícolas. São aquelas estruturadas por edificações e sistema viário, nas quais estão incluídas as metrópoles, cidades, vilas, as aldeias indígenas e comunidades quilombolas, áreas ocupadas por complexos industriais e comerciais e edificações que podem, em alguns casos, estar situadas em áreas peri-urbanas. Também pertencem a essa classe as áreas onde ocorrem a exploração ou extração de substâncias minerais, por meio de lavra ou garimpo.
Área Agrícola	Área caracterizada por lavouras temporárias, semi-perenes e permanentes, irrigadas ou não, sendo a terra utilizada para a produção de alimentos, fibras, combustíveis e outras matérias-primas. Segue os parâmetros adotados nas pesquisas agrícolas do IBGE e inclui todas as áreas cultivadas, inclusive as que estão em pousio ou localizadas em terrenos alagáveis. Pode ser representada por zonas agrícolas heterogêneas ou extensas áreas de plantations. Inclui os tanques de aquicultura.
Pastagem com Manejo	Áreas destinadas ao pastoreio do gado e outros animais, com vegetação herbácea cultivada (braquiária, azevém, etc) ou vegetação campestre (natural), ambas apresentando interferências antrópicas de alta intensidade. Estas interferências podem incluir o plantio; a limpeza da terra (destocamento e despedramento); eliminação de ervas daninhas de forma mecânica ou química (aplicação de herbicidas); gradagem; calagem; adubação; entre outras que descaracterizem a cobertura natural.
Mosaico de Ocupações em Área Florestal	Área caracterizada por ocupação mista de área agrícola, pastagem e/ou silvicultura associada ou não a remanescentes florestais, na qual não é possível uma individualização de seus componentes. Inclui também áreas com perturbações naturais e antrópicas, mecânicas ou não mecânicas, que dificultem a caracterização da área.
Silvicultura	Área caracterizada por plantios florestais de espécies exóticas ou nativas como monoculturas. Segue os parâmetros adotados nas pesquisas de extração vegetal e silvicultura do IBGE.
Vegetação Florestal	Área ocupada por florestas. Consideram-se florestais as formações arbóreas com porte superior a 5 metros de altura, incluindo-se aí as áreas de Floresta Ombrófila Densa, de Floresta Ombrófila Aberta, de Floresta Estacional, além da Floresta Ombrófila Mista. Inclui outras feições em razão de seu porte superior a 5 m de altura, como a Savana Florestada, Campinarana Florestada, Savana-Estépica Florestada, os Manguezais e os Buritizais, conforme o Manual Técnico de Uso da Terra (IBGE, 2013).
Área Úmida	Área caracterizada por vegetação natural herbácea ou arbustiva (cobertura de 10% ou mais), permanentemente ou periodicamente inundada por água doce ou salobra. Inclui os terrenos de charcos, pântanos, campos úmidos, estuários, entre outros. O período de inundação deve ser de no mínimo 2 meses por ano. Pode ocorrer vegetação arbustiva ou arbórea, desde que estas ocupem área inferior a 10% do total.
Vegetação Campestre	Área caracterizada por formações campestres. Entende-se como campestres as diferentes categorias de vegetação fisionomicamente bem diversas da florestal, ou seja, aquelas que se caracterizam por um estrato predominantemente arbustivo, esparsamente distribuído sobre um estrato gramíneo-lenhoso. Incluem-se nessa categoria as Savanas, Estepes, Savanas-Estépicas, Formações Pioneiras e Refúgios Ecológicos. Encontram-se disseminadas por diferentes regiões fitogeográficas, compreendendo diferentes tipologias primárias: estepes planaltinas, campos rupestres das serras costeiras e campos hidroarenosos litorâneos (restinga),



Classificação	Descrição
	conforme o Manual Técnico de Uso da Terra (IBGE, 2013). Essas áreas podem estar sujeitas a pastoreio e a outras interferências antrópicas de baixa intensidade como as áreas de pastagens não manejadas do Rio Grande do Sul e do Pantanal.
Mosaico de Ocupações em Área Campestre	Área caracterizada por ocupação mista de área agrícola, pastagem e/ou silvicultura associada ou não a remanescentes campestres, na qual não é possível uma individualização de seus componentes. Inclui também áreas com perturbações naturais e antrópicas, mecânicas ou não mecânicas, que dificultem a caracterização da área.
Corpo d'água Continental	Inclui todas as águas interiores, como rios, riachos, canais e outros corpos d'água lineares. Também engloba corpos d'água naturalmente fechados (lagos naturais) e reservatórios artificiais (represamentos artificiais de água construídos para irrigação, controle de enchentes, fornecimento de água e geração de energia elétrica). Não inclui os tanques de aquicultura.
Corpo d'água Costeiro	Inclui as águas inseridas nas 12 milhas náuticas, conforme Lei nº 8.617, de 4 de janeiro de 1993.
Área Descoberta	Esta categoria engloba locais sem vegetação, como os afloramentos rochosos, penhascos, recifes e terrenos com processos de erosão ativos. Também inclui as praias e dunas, litorâneas e interiores, e acúmulo de cascalho ao longo dos rios.

Fonte: IBGE (2020).

Figura 15 – Distribuição das classes de cobertura e uso do solo ao longo dos municípios atendidos pela CORSAN.

No que diz respeito ao município em estudo, o **Quadro 28** apresenta uma análise detalhada das categorias de uso e cobertura do solo em seu território.

Quadro 28 – Distribuição do uso e cobertura do solo do município.

Município	Uso e cobertura do solo	Cobertura territorial
	Área Artificial	0,18%
	Área Agrícola	20,73%
	Mosaico de Ocupações em Área Florestal	0,14%
Rosário do Sul	Silvicultura	2,18%
Rosario do Sui	Vegetação Florestal	3,33%
	Vegetação Campestre	70,69%
	Mosaico de Ocupações em Área Campestre	2,61%
	Corpo d'Água Continental	0,14%

Fonte: Elaboração própria (2024).

2.4.2. Aspectos econômicos

A consideração dos aspectos econômicos é essencial para garantir que as propostas e estratégias sejam viáveis e sustentáveis. A dimensão econômica influencia diretamente a capacidade de implementação e a eficácia dos sistemas de saneamento, impactando a qualidade de vida da população e a integridade ambiental.

2.4.2.1. Atividades e vocações econômicas

A análise da atividade e vocação econômica é crucial para entender o desenvolvimento regional e orientar políticas públicas eficazes. Este tópico aborda a distribuição e a concentração das principais atividades econômicas no Rio Grande do Sul, destacando os setores de maior relevância para a economia estadual, como agropecuária, indústria e serviços. Além disso, examina a vocação econômica dos municípios, evidenciando as áreas de especialização e potencial de crescimento econômico.

De acordo com a Secretaria de Planejamento, Governança e Gestão do Governo do Rio Grande do Sul os 3 (três) principais setores econômicos responsáveis pela produção de bens e serviço são: Agropecuária, Indústria e Serviços.

Para o ano de 2023 o setor da agropecuária foi o que mais cresceu, seguido pelo setor de serviços. A **Figura 16** apresenta as taxas de crescimento acumuladas no ano do PIB, dos impostos e do Valor Adicionado Bruto (VAB), total e por atividades, do Rio Grande do Sul e do Brasil — 2023/2022

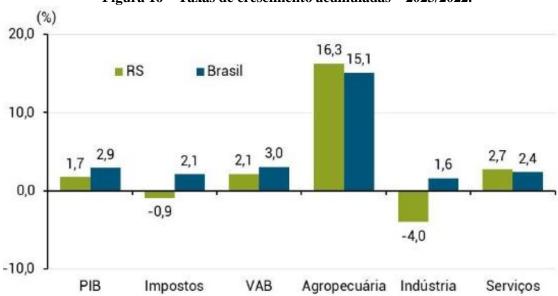


Figura 16 – Taxas de crescimento acumuladas – 2023/2022.

Fonte: SPGG-RS/DEE (2023).

O **Quadro 29** apresenta o VAB para o município em estudo, abrangendo os setores de Agropecuária, Indústria e Serviços, excluindo Administração, Defesa, Educação, Saúde Públicas e Seguridade Social.

WAB da Agropecuária, VAB da Indústria, VAB dos Serviços, a preços correntes (R\$ 1.000) (R\$ 1.000) (R\$ 1.000)

60.427,01

Quadro 29 – VAB dos setores do município – 2021.

Fonte: Adaptado de IBGE (2023) e SPGG-RS/DEE (2023).

2.4.2.2. Caracterização do mercado de trabalho

507.511,86

Rosário do Sul

De acordo com dados do Atlas de Desenvolvimento Humano de 2010, a maioria da população ocupada está no setor de serviços, seguido pelos setores de agropecuária e

498.667,69

indústria de transformação. O **Figura 17** ilustra o percentual da população ocupada do município em estudo em cada setor para o ano de 2010.

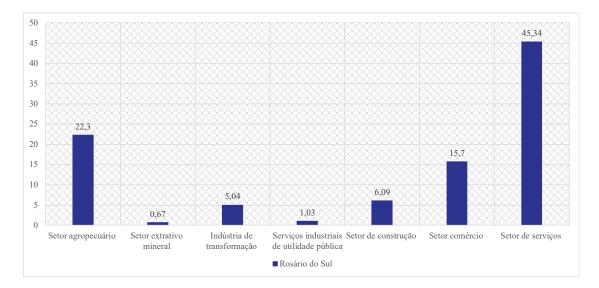


Figura 17 – Percentual de ocupação no município – 2010.

Fonte: Adaptado de Atlas de Desenvolvimento Humano (2010).

2.4.2.3. Panorama fiscal

Segundo a Secretaria de Planejamento, Governança e Gestão (SPGG) do Rio Grande do Sul, o PIB per capita do estado em 2023 foi de R\$ 55.454, o que representa um aumento de 10,5% em relação ao PIB per capita do Brasil.

O Departamento de Economia e Estatística (DEE) da SPGG elabora o relatório do PIB, com uma defasagem de dois anos devido à disponibilidade de dados do IBGE. Em 2021, o PIB do Rio Grande do Sul cresceu 9,3% após uma retração de 7,3% em 2020. O VAB aumentou 9,5%, e os impostos, 7,7%. Esse foi o maior crescimento entre as 27 unidades da Federação, impulsionado pela expansão da agropecuária (53,0%), da indústria (8,1%) e dos serviços (4,4%). Em 2021, o PIB per capita do estado cresceu 8,9%, atingindo R\$ 50.693,51, 20% acima da média nacional, posicionando o Estado na sexta posição nacionalmente.

O PIB municipal e o *per capita* do município em estudo está sendo apresentado no **Quadro 30**.

Quadro 30 – PIB municipal e per capita do município – 2021.

Município	PIB municipal a preços correntes (R\$ 1.000)	PIB per capita a preços correntes (R\$ 1,00)
Rosário do Sul	1.381.969,37	35.245,33

Fonte: Adaptado de IBGE (2023) e SPGG-RS/DEE (2023).

3. DIAGNÓSTICO DA INFRAESTRUTURA EXISTENTE

De acordo com a Lei Federal nº 11.445/2007, o abastecimento de água potável e o esgotamento sanitário constituem pilares fundamentais para garantir a saúde pública, o bem-estar das comunidades e o desenvolvimento econômico e social. O abastecimento de água potável envolve um conjunto de atividades, infraestruturas e instalações necessárias para captar, tratar e distribuir água de qualidade à população, abrangendo desde a captação até as ligações prediais e os instrumentos de medição.

No Brasil, os sistemas de abastecimento de água podem ser classificados como isolados, quando atendem a um único manancial e localidades específicas, ou integrados, quando abastecem simultaneamente múltiplos municípios utilizando um ou mais mananciais.

A eficiência desses sistemas é essencial para prevenir doenças de veiculação hídrica e promover a melhoria da qualidade de vida, reduzindo desigualdades regionais. Da mesma forma, o sistema de esgotamento sanitário desempenha um papel crucial na promoção da saúde pública e na preservação ambiental, ao assegurar o afastamento, transporte, tratamento e destinação final dos esgotos gerados pela população. A implementação adequada contribui diretamente para a prevenção de doenças e a proteção dos recursos naturais, mitigando os impactos negativos decorrentes do descarte inadequado de esgotos.

Neste contexto, este capítulo apresentará um diagnóstico da infraestrutura existente, analisando o sistema de abastecimento de água e esgotamento sanitário do município.

3.1. Abastecimento de água

3.1.1. Captação superficial

Rosário do Sul é banhada pelo Rio Santa Maria, o município é servido principalmente pela bacia hidrográfica do Rio Santa Maria (70%). O sistema de abastecimento de água existente no município de Rosário do Sul é composto por um ponto de captação superficial, localizado no Rio Ibicuí da Armada, com coordenadas geográficas latitude - 30.2789°S longitude -54.9386°O, com licença para a vazão de captação de água bruta de

0,12 m³/s. Conduzida através de uma tubulação de F°F° com 2.236,57m com diâmetro de 400mm.

A figura a seguir mostra uma imagem de satélite com a localização da captação de água bruta de Rosário do Sul.

A água bruta é captada no Rio Ibicuí da Armada. A água do Rio é bombeada à Estação de Tratamento de Água (ETA) através de 3 grupos motor-bomba (podendo operar até 2 GMBs ao mesmo tempo), localizados no local denominado primeiro recalque (EBAB 01) de água bruta.

Figura 18 – Imagem de satélite do município de Rosário do Sul.

Fonte: Google Earth (2024).

3.1.2. Sistema de tratamento de água

A água bruta captada passa na ETA, localizada na Rua Dr. Agripino de Araújo, nº 260, e composta pelas seguintes etapas de tratamento.

CALHA PARSHALL → FLOCULAÇÃO → DECANTAÇÃO → FILTRAÇÃO → CÂMARA DE CONTATO

3.1.3. Reservação

A unidade de Rosário do Sul possui oito (08) reservatórios, sendo 03 elevados, 03 apoiados e 02 enterrados. O quadro a seguir mostra os dados dos reservatórios.

Quadro 31 - Informações referente aos reservatórios.

Reservatório	Coordenadas	Endereço	Tipo	Capacidade (m³)	Situação
R-02	-54.9209 - 30.2488	Rua Julio de Castilhos, 2724	Enterrado	300	Ativo
R-03	-54.9212 - 30.2487	Rua Julio de Castilhos, 2724	Enterrado	400	Ativo
R-04	-54.9211 - 30.2488	Rua Julio de Castilhos, 2724	Elevado	250	Ativo
R-05	-54.9300 - 30.2476	Av. Coronel Sabino Araújo	Elevado	250	Ativo
R-06	-54.9207 - 30.2490	Rua Júlio de Castilhos,2724	Apoiado	1000	Ativo
R-07	-54.9392 - 30.2471	Rua Padre Anchieta	Apoiado	50	Ativo
R-08	-54.9390 - 30.2471	Rua Padre Anchieta	Elevado	50	Ativo
R-10	-54.9230 - 30.2647	ETA II – Rua Agripino de Araujo	Apoiado	500	Ativo
R - 11	-54.9430 - 30.2407	Rua Jaime Bermudes Ramis, 8	Elevado	100	Ativo

Fonte: Elaboração própria (2024).

3.1.4. Estações de bombeamento de água

O 1º recalque (EBAB 01) capta a água do manancial através de sucção positiva e recalca para a ETA com vazão de 100 l/s.

A água tratada na ETA é armazenada no reservatório R-10 e então bombeada através da estação de bombeamento de água tratada (EBAT 02) para abastecer os sistemas de reservatórios R-06, R-02 e R-03 de Rosário do Sul. A que abastece os reservatórios R-08 e R-09 é bombeada para a Zona Norte e Zona Alta através do terceiro recalque (EBAT 03).

O quarto recalque (EBAT 04) capta água do reservatório R-03 através de sucção negativa e abastece em marcha o reservatório R - 05 e R - 07.

O quinto recalque (EBAT 05) capta água do reservatório R - 07 através de sucção negativa e recalca para o reservatório R - 08, o qual abastece a zona altíssima da cidade.

3.1.5. Rede de distribuição de água

O sistema de distribuição é composto por 133.000,00 metros de redes de distribuição com diâmetros entre 32mm e 400mm, dividida em quatro (04) zonas de pressão.

3.1.6. Fluxograma esquemático do sistema

A distribuição de água no município de Rosário do Sul está detalhada no croqui apresentado na figura a seguir.

Figura 19 – Croqui da distribuição de água no município de Rosário do Sul.

3.1.7. Identificação dos pontos vulneráveis

Os pontos vulneráveis encontram-se descritos a seguir.

- Manancial superficial;
- Ponto de captação de água bruta junto ao manancial;
- Estações de bombeamento de água bruta e água tratada (EBAB e EBAT);
- Estação de tratamento de água
- Rede de distribuição de água pontos críticos de abastecimento, como hospitais, escolas, instituições carcerárias, locais com prestação de serviço essencial com alta concentração de pessoas.

Os pontos encontram-se apresentados na figura a seguir.

Figura 20 – Pontos vulneráveis do SAA.

Fonte: Google Earth (2024).

3.1.8. Identificação das áreas com maior demanda

As áreas com maior demanda de consumo de água no município estão indicadas a seguir.

Quadro 32 - Área com maior demanda de consumo.

Zona /bairro	Economias
Centro	3600

Fonte: Elaboração própria (2024).

Figura 21 – Zonas de maior consumo.

3.2. Esgotamento sanitário

O sistema de esgotamento sanitário do município, segundo levantamento recente, possui aproximadamente 39.444 m entre redes, coletores e emissários. Além disso, segundo os dados atualizados da Diretoria Comercial, tem-se 2.2995 economias de esgoto ativas (16,94% do total de economias de água), sendo 3 de esgoto coletado e 2.292 de esgoto tratado, além de 368 ligações factíveis.

Dessa forma, tem-se cerca de 0,022% de economias sendo atendidas pelo esgoto coletado e 16,92% de economias atendidas pelo tratamento de esgoto.

3.2.1. Rede de coleta de esgoto bruto

O SES é composto rede coletora tipo separador absoluto, com extensão de rede de, aproximadamente, 39.444 m, os diâmetros DN 100, 150, 200, DN 300, DN 400, DN 500, DN 600, DN 700, DN 800 e DN 900.

3.2.2. Estações de bombeamento de esgoto bruto

O sistema de esgotamento sanitário de Rosário do Sul conta atualmente com 3 (três) estações de bombeamento de esgoto bruto e duas estações de tratamento de esgoto, localização e situação de operação evidenciadas no quadro a seguir.

Quadro 33 - Informações referente as estações de bombeamento.

Estação	Coordenadas	Endereço	Situação
EBE - 01	-30.250481, -54.912207	R. dos Andradas com R. Areia Branca	Ativo
EBE - 02	-30.244155, -54.915905	R. Voluntários da pátria com Tv. João Brasil	Ativo
EBE - 03	-30.270803, -54.916687	R. João Alves Osório	Ativo
ETE AREIAS BRANCAS	-30.232361, -54.923333	R. Amaro Souto com R. Gen. Canabarro	Ativo
ETE ANA LUIZA	-30,264962, -54,909191	R. Dr. João Pacheco Pratés, 1069	Ativo

Fonte: Elaboração própria (2024).

A figura a seguir mostra uma vista de satélite com a localização da ETE Areias Brancas, ETE Ana Luiza e das EBEs que compõe o SES Rosário do Sul.

Figura 22 – Imagem de satélite do Google Earth com a localização das EBEs e ETEs do SES Rosário do Sul.

Fonte: Google Earth (2024).

3.2.3. Estação de tratamento de esgoto

O SES de Rosário do Sul conta com duas Estações de Tratamento de Esgoto, ETE Areias Brancas e ETE Ana Luiza, destina-se a tratar esgoto doméstico de parte do município de Rosário do Sul. O projeto da ETE Areias Brancas atualmente possui licença para operação de 59,58 L/s (5.184,00 m³/d). O corpo receptor é o Arroio sem Denominação e o Rio Santa Maria, contanto que sejam realizadas obras do emissário.

O processo de tratamento da ETE Areias Brancas inicia-se com o gradeamento, responsável por reter sólidos maiores. Após essa filtragem inicial, o esgoto é direcionado para a elevatória, onde bombas transportam o esgoto até as lagoas de tratamento. O esgoto chega à lagoa anaeróbia, onde bactérias anaeróbias, em ausência de oxigênio, decompõem a matéria orgânica.

Posteriormente, o esgoto é tratado na lagoa facultativa, onde ocorrem processos aeróbios na superfície, auxiliados pela presença de algas, e anaeróbios no fundo. A zona intermediária é facultativa, podendo realizar tanto processos aeróbios quanto anaeróbios, promovendo a remoção gradual da matéria orgânica restante.

A fase final ocorre em um banhado, uma área natural ou construída com vegetação aquática, que atua como um filtro biológico.

O projeto da ETE Ana Luiza possui licença para operação de 7 L/s (604,80 m³/d). O corpo receptor do efluente é o Arroio sem Denominação.

O sistema de tratamento da ETE Ana Luiza é composto por caixa desarenadora, que remove sólidos grossos, como areia, evitando que esses materiais danifiquem as etapas seguintes. Em seguida, o esgoto é direcionado para a lagoa anaeróbia, onde bactérias, em ambiente sem oxigênio, decompõem a matéria orgânica, gerando biogás como metano e dióxido de carbono, reduzindo a carga poluente.

Depois, o esgoto passa pela lagoa facultativa, onde processos aeróbios ocorrem na superfície e anaeróbios no fundo. Algas presentes ajudam na remoção da matéria

orgânica, gerando oxigênio pela fotossíntese. Após essas etapas, o esgoto tratado é liberado em um corpo receptor.

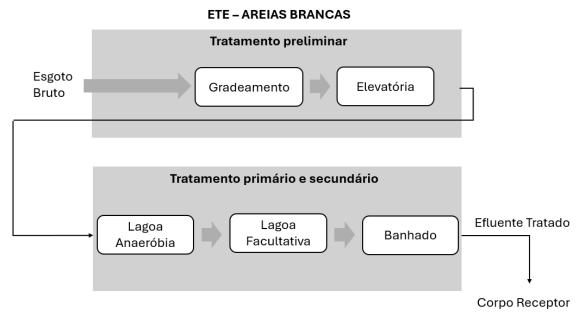

As figuras a seguir mostram o fluxograma simplificado do tratamento de esgoto da ETE Ana Luiza e ETE Areias Brancas, respectivamente.

Figura 23 – Fluxograma simplificado do tratamento nas ETE Ana Luiza.

Esgoto Bruto Caixa Desarenadora Lagoa Anaeróbia Lagoa Facultativa Corpo Receptor

Fonte: Elaboração própria (2024).

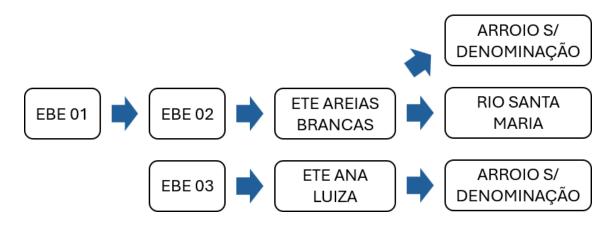
Figura 24 - Fluxograma simplificado do tratamento nas ETE Areias Brancas.

Fonte: Elaboração própria (2024).

3.2.4. Emissário do efluente tratado

O emissário de efluente tratado segue, por gravidade, desde a saída da ETE Areias Brancas até o ponto de lançamento no corpo receptor. As coordenadas geográficas do ponto de lançamento do efluente tratado são -30.2320, -54.9189388 e -30.22677778, -54.91330556.

O emissário de efluente tratado segue, por gravidade, desde a saída da ETE Ana Luiza até o ponto de lançamento no corpo receptor. As coordenadas geográficas do ponto de lançamento do efluente tratado são -30.264694, -54.908398.


3.2.5. Corpo receptor

O Corpo receptor é um arroio sem denominação e o Rio Santa Maria.

3.2.6. Fluxograma esquemático do sistema

A figura a seguir apresenta um fluxograma simplificado da operação atual do SES Rosário do Sul.

Figura 25 – Fluxograma simplificado do SES Rosário do Sul.

Fonte: Elaboração própria (2024).

3.2.7. Identificação dos pontos vulneráveis

Os pontos vulneráveis encontram-se descritos a seguir.

- Estações de bombeamento de esgoto;
- Rede coletora de esgoto pontos de extravasamento;
- Estação de tratamento de esgoto;
- Emissário do efluente tratado
- Corpo receptor ponto de lançamento de efluentes tratados.

Os pontos encontram-se apresentados na figura a seguir.

Figura 26 – Pontos vulneráveis do SES.

Fonte: Google Earth (2024).

4. OBJETIVOS E METAS PARA UNIVERSALIZAÇÃO DOS SERVIÇOS

A universalização dos serviços de saneamento básico é um compromisso fundamental para promover a saúde pública, a dignidade humana e a sustentabilidade ambiental. No contexto do Plano, estabelecer objetivos claros e metas mensuráveis é essencial para orientar as ações e investimentos necessários à expansão e melhoria dos serviços de abastecimento de água e esgotamento sanitário.

Este capítulo apresenta os objetivos estratégicos e as metas específicas que nortearão as políticas públicas e as iniciativas regionais de saneamento básico. Os objetivos definidos visam atender às diretrizes nacionais de saneamento, garantindo a equidade no acesso aos serviços e promovendo a eficiência operacional dos sistemas. As metas, por sua vez, são delineadas com base em diagnósticos detalhados das condições atuais, considerando as particularidades de cada município e as demandas da população.

Ao longo deste capítulo, serão apresentados os indicadores de desempenho e os prazos para o alcance das metas, bem como as estratégias para superar os desafios e obstáculos que possam surgir.

4.1. Projeção populacional

As projeções populacionais desempenham um papel fundamental no planejamento abrangente de políticas públicas voltadas para o bem-estar social, desenvolvimento econômico e, especificamente, para a execução eficaz de projetos de saneamento básico. No contexto desses projetos, a projeção populacional emerge como uma ferramenta indispensável, fornecendo insights cruciais para o dimensionamento adequado das infraestruturas necessárias, além de servir como base para o cálculo das demandas futuras.

A confiabilidade dessas projeções é um elemento central em estudos dessa natureza. Para alcançar esse nível de confiança, é imperativo realizar uma análise abrangente e interdisciplinar dos cenários passado, presente e futuro da população em questão. Isso não apenas demanda uma compreensão profunda das variáveis que interagem com a

população ao longo do tempo, mas também exige uma perfeita adequação dos métodos empregados no cálculo das projeções aos dados disponíveis.

A complexidade inerente à elaboração dessas projeções é evidente, especialmente devido à necessidade de uma análise cuidadosa das variáveis que interagem com a população em um determinado espaço geográfico ao longo do tempo projetado. Dado que as projeções se relacionam com o futuro, é crucial considerar a incerteza, mesmo quando há informações históricas detalhadas e confiáveis disponíveis sobre a população em estudo.

O levantamento dos dados essenciais para a realização deste estudo populacional foi conduzido por meio das principais fontes de informações neste campo, com destaque para o Instituto Brasileiro de Geografia e Estatística (IBGE). Essa abordagem assegura uma base sólida e atualizada para a projeção, incorporando dados confiáveis que são essenciais para a precisão e utilidade do planejamento futuro.

4.1.1. Método utilizado para projeções populacionais

A projeção da população na área de atendimento do Sistema CORSAN foi realizada com base na metodologia descrita abaixo.

Como ponto de partida utilizou-se os dados oficial do Censo Demográfico de 2022, realizado pelo Instituto Brasileiro de Geografia e Estatística (IBGE), que fornece um retrato detalhado e atualizado da população para cada município atendido pela Corsan no Estado do Rio Grande do Sul, incluindo a separação entre população urbana e população rural.

Para a estimativa de crescimento dessa população no tempo, utilizou-se a estimativa de crescimento da população total do Estado, também publicada pelo IBGE (versão publicada em 2024). Essa estimativa leva em conta variáveis como a taxa de natalidade, mortalidade, migração e o envelhecimento da população.

Segundo a nota metodológica n. 01 do IBGE, a população estimada de uma Unidade da Federação em um dado momento t representada como P(t). Essa população é dividida em

n áreas menores, geralmente municípios, onde a população de cada área i no tempo t é denotada por Pi(t).

A soma das populações dessas áreas menores deve igualar a população total da Unidade da Federação:

$$Pi(t); i = 1,2,3...n$$

$$P(t) = \sum_{i=1}^{n} P_i(t)$$

Esta taxa de crescimento, no entanto, considera tanto população urbana quanto rural. Desta forma, o crescimento da população nas áreas de atendimento da Corsan foi posteriormente ponderado pela taxa de urbanização observada no Estado entre os Censos 2000, 2010 e 2022. Assim, procurou-se capturar tanto a variação total da população quanto a evolução específica dos movimentos de urbanização dos centros urbanos dos municípios do Sistema CORSAN.

Essa metodologia permite acompanhar a evolução populacional de forma contínua, mesmo nos anos intercensitários, garantindo uma estimativa coerente com os padrões nacionais de crescimento demográfico. As projeções, embora sujeitas a revisões, oferecem uma base confiável para decisões governamentais e estratégicas em áreas como saúde, educação, habitação e transporte.

4.1.2. Projeções populacionais adotadas

Após a aplicação da metodologia supracitada, foram definidas as projeções populacionais totais, urbana e rural, apresentadas no **ANEXO I – PROJEÇÃO POPULACIONAL.**

4.2. Universalização dos serviços

Neste item serão apresentados os objetivos, metas e indicadores para a universalização dos serviços de abastecimento de água e esgotamento sanitário, além da metodologia de cálculo adotada.

4.2.1. Objetivos, metas e indicadores

O Plano visa criar um quadro coerente de ações e investimentos que, ao longo do tempo, conduzam à universalização dos serviços de saneamento, melhorando a saúde e a qualidade de vida da população e assegurando a sustentabilidade ambiental e econômica das operações.

Desta forma foram definidos os seguintes objetivos específicos, para os sistemas de abastecimento de água e esgotamento sanitário:

- Melhoria e expansão do abastecimento de água e esgotamento sanitário, a fim de garantir a universalização ao acesso a água potável e cobertura do esgotamento sanitário;
- Garantir o acesso de qualidade aos serviços de abastecimento de água.

Para atingir os objetivos estabelecidos, tem-se as seguintes metas:

• Universalização: alcançar a meta de 99% de cobertura de água e 90% de cobertura de esgoto, até 2033, conforme a Lei Federal nº 14.026/20, mantendo esta cobertura até 2062.

Para garantir o acompanhamento eficaz das metas estabelecidas no Plano, é fundamental a utilização de indicadores de desempenho. Esses indicadores proporcionarão uma avaliação contínua e objetiva do progresso em direção aos objetivos definidos, permitindo ajustes necessários ao longo do processo.

Por meio da medição sistemática da cobertura dos sistemas, será possível monitorar a eficiência e a eficácia das ações implementadas. É relevante destacar que os indicadores apresentados estão em conformidade com aqueles previstos nos contratos de concessão de serviço público assinados por cada município.

A seguir, serão apresentados os principais indicadores a serem acompanhados.

4.2.1.1. Metodologia do cálculo

A metodologia de cálculo das metas de universalização dos serviços de abastecimento de água e esgotamento sanitário é fundamental para garantir que os objetivos de cobertura e eficiência sejam alcançados de maneira precisa e sustentável. Este item tem como propósito detalhar os critérios e procedimentos utilizados para determinar as metas de universalização, assegurando que todas as áreas de prestação dos serviços sejam devidamente atendidas.

A abordagem considera as características específicas de cada região, incluindo a exclusão de imóveis localizados em áreas irregulares ou com baixa densidade populacional, e leva em conta tanto as economias factíveis quanto as soluções individuais de coleta e tratamento de esgoto sanitário. Através desta metodologia, busca-se promover a transparência e a eficácia no planejamento e na execução das ações necessárias para a universalização dos serviços de saneamento básico.

A metodologia leva em consideração, portanto, os seguintes tópicos:

- Área de prestação dos serviços;
- A exclusão dos imóveis localizados em áreas irregulares e imóveis localizados em áreas cuja densidade seja abaixo de 1 (uma) ligação para cada 20m (vinte metros) de rede;
- Economias factíveis são as unidades consumidoras ou domicílios com disponibilidade para serem conectados às redes públicas de abastecimento de água e esgotamento sanitário.
- Soluções individuais de coleta e tratamento de esgoto sanitário existentes na área de prestação dos serviços.

4.2.1.2. Nível de universalização dos serviços de água

Acompanha a cobertura dos serviços de abastecimento de água do município, aplicando o NUA, seguindo a fórmula:

$$NUA = \frac{Economias \ Residenciais \ de \ \acute{A}gua}{Domic\'ilios \ Residenciais} \ x \ 100$$

Onde,

- Economias residenciais de água: número de economias residenciais que possuem acesso aos serviços de abastecimento de água, na área da prestação dos serviços, incluindo economias residenciais ativas, inativas e factíveis, obtidas a partir dos cadastros comercial e operacional da Concessionária;
- Domicílios residenciais: número total de domicílios residenciais com viabilidade técnica para serem conectados à rede de abastecimento de água na Área de Prestação dos Serviços. Deverá ser calculado com base no número de domicílios estimados pelo IBGE.

O instrumento de delegação dos serviços à Concessionária apresenta as metas intermediária e de universalização de cobertura do serviço de esgotamento sanitário do município, as quais são incorporadas automaticamente a este Plano.

4.2.1.3. Nível de universalização dos serviços de esgotamento sanitário

Acompanha a cobertura dos serviços de esgotamento sanitário para cada município, aplicando o NUE, seguindo a fórmula:

$$NUE = \frac{Economias \ Residenciais \ de \ Esgoto}{Domicílios \ Residenciais} \ x \ 100$$

Onde,

- Economias residenciais esgoto: número de economias residenciais que possuem acesso aos serviços de esgotamento sanitário na Área de Prestação dos Serviços, incluindo economias residenciais ativas, inativas e factíveis, obtidas a partir dos cadastros comercial e operacional da Concessionária;
- Domicílios residenciais: número total de domicílios residenciais com viabilidade técnica para serem conectados à rede de esgotamento sanitário na Área de Prestação dos Serviços. Deverá ser calculado com base no número de domicílios

estimados pelo IBGE e não deverá incluir domicílios em soleira baixa ou qualquer outra impossibilidade técnica de conexão.

O instrumento de delegação dos serviços à Concessionária apresenta as metas intermediária e de universalização de cobertura do serviço de esgotamento sanitário do município, as quais são incorporadas automaticamente a este Plano.

5. PROGRAMAS, PROJETOS E AÇÕES

Os programas, projetos e ações são essenciais para atingir as metas estabelecidas, que devem ser compatíveis com os Planos Plurianuais e outros planos governamentais, conforme a Lei Federal nº 14.026/2020. No entanto, a falta de instrumentos municipais como o Plano Diretor e a ausência de detalhes sobre os componentes do saneamento básico complicam o planejamento.

Apesar disso, o Plano Regional de Água e Esgoto representa um passo importante para a universalização eficiente do saneamento básico regional. A integração dos diversos instrumentos de planejamento e a identificação de fontes de financiamento são cruciais para a sustentabilidade dessas proposições.

Para atingir as metas de cobertura, redução de perdas e qualidade nos serviços de abastecimento de água e esgotamento sanitário, é necessário, portanto, um programa de investimentos amplo e abrangente.

5.1. Premissas e diretrizes

A definição dos programas, projetos e ações perpassa pelo entendimento de cada conceito. De acordo com Galvão Júnior et al. (2010), os programas referem-se ao esboço geral de finalidade abrangente, determinando táticas e métodos de maneira estratégica, sendo possível concretizar as metas e objetivos. Já os projetos são entendidos como elementos de cada programa, podendo ser ou não ligados a outros programas, dentro de um mesmo projeto. Por fim, as ações são específicas a cada projeto, tendo foco na execução.

Os programas, projetos e ações aqui definidos, levaram em consideração o diagnóstico do município, operado pela CORSAN. Para isso foram consideradas as demandas pelos serviços de saneamento básico, bem como a dinâmica populacional, além de outros fatores que poderiam dificultar a universalização dos serviços de abastecimento de água e esgotamento sanitário.

Neste sentido, para alcançar os objetivos e metas de universalização, são propostos programas, projetos e ações com diferentes prazos, sendo importante ressaltar a necessidade de algumas adaptações a fim de garantir a conformidade com o Art. 11 – B da Lei Federal nº 14.056/2020, que determina o novo marco regulatório, a qual estabelece que:

"Os contratos de prestação dos serviços públicos de saneamento básico deverão definir metas de universalização que garantam o atendimento de 99% (noventa e nove por cento) da população com água potável e de 90% (noventa por cento) da população com coleta e tratamento de esgotos até 31 de dezembro de 2033, assim como metas quantitativas de não intermitência do abastecimento, de redução de perdas e de melhoria dos processos de tratamento."

Sendo assim, os prazos para os programas, projetos e ações ficam definidos:

Curto prazo: 2025 a 2030;

Médio prazo: 2031 a 2033;

Longo prazo: 2034 a 2062.

As medidas a serem implementadas são divididas em estruturais e estruturantes e levam em consideração a disponibilidade orçamentária, viabilidade técnica, bem como as obrigações específicas constantes nos contratos de concessão.

Dessa forma, as medidas estruturais dizem respeito às intervenções no ambiente físico, sendo fundamentais para assegurar a universalização dos serviços de abastecimento de água e esgotamento sanitário. Por outro lado, as medidas estruturantes referem-se a aspectos gerenciais, essenciais para o suporte e a eficácia na prestação desses serviços.

5.2. Abastecimento de água

5.2.1. Programa, projetos e ações estruturais

A garantia de um sistema eficiente de abastecimento de água é fundamental para a saúde pública e o bem-estar da população. Para atingir esse objetivo, é necessário implementar uma série de ações estratégicas e estruturais que assegurem a captação, tratamento, armazenamento e distribuição da água de maneira eficaz e sustentável. Essas ações devem ser planejadas e executadas de forma integrada, considerando a diversidade de contextos

regionais e a necessidade de preservar os recursos hídricos. A implementação de tecnologias avançadas, a modernização da infraestrutura existente e a gestão eficiente dos recursos são pilares essenciais para o sucesso dessas iniciativas.

O Quadro 34 apresenta a consolidação dos programas e ações para os sistemas de abastecimento de água, oferecendo uma visão abrangente das diretrizes propostas. No entanto, é fundamental ressaltar que cada município possui suas próprias necessidades, sendo as ações ajustadas conforme suas metas contratuais e cronogramas operacionais, de modo a assegurar o cumprimento dos objetivos e a implementação das melhorias necessárias.

Quadro 34 – Programa, projetos e ações estruturais para os sistemas de abastecimento de água.

Duranua	Durteton	A = = = =	Pra	zo de Exe	D /1	
Programa	Projetos	Ações	Curto	Médio	Longo	Responsável
		Execução de melhorias e/ou substituições dos parques de hidrômetros.				

5.2.2. Programa, projetos e ações estruturantes

O programa estruturante para os sistemas de abastecimento de água tem como objetivo garantir a eficiência, a segurança e a sustentabilidade no fornecimento de água potável, promovendo ações que abrangem desde a organização técnica até o controle da qualidade dos serviços prestados.

Para atingir esses objetivos, os programas estão divididos em cinco áreas principais, conforme apresenta o **Quadro 35.**

Quadro 35 – Programa, projetos e ações estruturantes para os sistemas de abastecimento de água.

Duestina	Projeto Ação		Pra	zo de Execuç	ão	Dognongówal
Programa	Projeto	Ação	Curto	Médio	Longo	Responsável
Governança Operacional e Gestão de Dados	Regularização, Capacitação e Monitoramento	Regularização e monitoramento das licenças e outorgas para que todas os sistemas de abastecimento de água estejam em conformidade com as normas legais, assegurando a continuidade e expansão dos serviços de forma regularizada. Prover treinamento contínuo e atualização para os profissionais envolvidos na operação e manutenção do sistema de abastecimento, assegurando que estejam preparados para lidar com desafios técnicos e operacionais. Elaborar estudos técnicos				Concessionária
		que subsidiem a criação de				

D.	Projeto	. ~	Prazo de Execução			Daga ay afaral
Programa		Ação -	Curto	Médio	Longo	Responsável
		projetos para a modernização e ampliação da infraestrutura, aumentando a eficiência do sistema de abastecimento. Implementar um sistema de informações para monitorar a eficiência do abastecimento de água, identificando possíveis melhorias e otimizações no processo.				
	Integração e Atualização de Dados Cadastrais e Operacionais	Atualização contínua das informações cadastrais dos usuários e redes de abastecimento e seus dispositivos especiais (válvulas, ventosas, registros, hidrantes e conexões), garantindo que essas informações sejam constantemente atualizadas e acessíveis para a gestão operacional.				Concessionária
	Eficiência Operacional e Controle de Perdas	Identificar e combater as perdas de água nos sistemas, por meio de tecnologia de detecção de vazamentos, controle de fraudes e manutenção preventiva.				Concessionária
Gestão Eficiente de Recursos Hídricos e Energéticos	Eficiente de Resiliência Hídrica Hídrica	Identificar e combater as ligações irregulares em soluções individuais de abastecimento (sem a devida outorga), assegurando a garantia de uso dos recursos hídricos conforme normas legais.				Prefeitura Municipal e Concessionária
-	Otimização Energética	Implementar tecnologias e processos que aumentem a eficiência energética nos sistemas de bombeamento, tratamento e distribuição de água, com a modernização de equipamentos e incorporação de fontes renováveis.				Concessionária

Duograma	Projeto	Ação	Prazo de Execução			Responsável
Programa	rrojeto	Açau	Curto	Médio	Longo	Responsaver
Segurança e Monitorame nto da Água Tratada	Controle da Qualidade da Água Tratada	Sistema de monitoramento para garantir o controle contínuo da qualidade da água, de acordo com as exigências das autoridades, para assegurar a conformidade com os padrões estabelecidos.				Concessionária

5.3. Esgotamento sanitário

5.3.1. Programa, projetos e ações estruturais

O desenvolvimento de um sistema eficiente de esgotamento sanitário é vital para assegurar a saúde pública e a preservação ambiental. Para isso, é essencial implementar ações coordenadas que abrangem desde a coleta dos esgotos até seu tratamento e disposição final. A construção e a modernização da infraestrutura de esgotamento sanitário são fundamentais para garantir que os resíduos sejam tratados adequadamente, evitando a contaminação dos corpos d'água e do solo.

As ações devem incluir a instalação de redes de coleta eficientes, a construção de estações de tratamento de modernas e a melhoria das conexões domiciliares.

O **Quadro 36** consolida os programas e ações para os sistemas de esgotamento sanitário, fornecendo uma visão abrangente das diretrizes propostas. No entanto, é importante destacar que cada município tem necessidades específicas, e as ações são alinhadas às suas metas contratuais e cronogramas operacionais, a fim de garantir o cumprimento dos objetivos e as melhorias adequadas.

Quadro 36 – Programa, projetos e ações estruturais para os sistemas de esgotamento sanitário.

Programa	Dunistan	A =2 ==	Praz	o de Exec	eução	Dogwowaćwal
	Projetos	Ações	Curto	Médio	Longo	Responsável
	Implantação dos Sistemas de Esgotamento	Implantação dos sistemas de interconexão da coleta de esgoto com as unidades contribuidoras (ramais de ligação, conexões etc.). Implantação dos sistemas de coleta e transporte de esgoto. Implantação dos sistemas de tratamento de esgoto. Implantação dos sistemas de tratamento do lodo.				Concessionária
Expansão e Implantação	Sanitário	Fiscalização para redução das ligações irregulares (lançamento de esgoto pluvial nas redes de esgoto cloacal e vice-versa)				Prefeitura Municipal e Concessionária
das Infraestruturas		Fiscalização da efetivação das ligações domiciliares de esgoto cloacal ao SES				Prefeitura Municipal
Expansão da Capacidade dos Sistemas de Esgotamento Sanitário	Implantação e/ou ampliação dos sistemas de interconexão da coleta de esgoto com as unidades contribuidoras (ramais de ligação, conexões etc.). Implantação e/ou ampliação dos sistemas de coleta e transporte de esgoto. Implantação e/ou ampliação dos sistemas de tratamento de esgoto. Implantação e/ou ampliação dos sistemas de tratamento do lodo.				Concessionária	
Renovação e Modernização das Infraestruturas	Melhoria Operacional e Substituições dos Sistemas de Esgotamento Sanitário	Manutenção da Cobertura do Sistema de Esgotamento Execução de melhorias e/ou substituições dos sistemas de interconexão da coleta de esgoto com as unidades contribuidoras (ramais de ligação, conexões etc.). Execução de melhorias e/ou substituições dos sistemas de coleta e transporte de esgoto. Execução de melhorias e/ou substituições dos sistemas de tratamento de esgoto. Execução de melhorias e/ou substituições dos sistemas de tratamento de sistemas de tratamento de oldo.				Concessionária

5.3.2. Programa, projetos e ações estruturantes

O programa tem como objetivo principal garantir a eficiência, legalidade e sustentabilidade na operação dos sistemas de coleta e tratamento de esgoto. Por meio de projetos focados na regularização ambiental, capacitação técnica, ampliação da infraestrutura e monitoramento da performance, o programa busca modernizar e expandir o sistema, melhorando a qualidade dos serviços prestados.

Além disso, contempla ações para otimizar o uso de energia e integrar dados operacionais, garantindo maior controle e eficiência na gestão dos recursos hídricos e do saneamento, em conformidade com as normas ambientais vigentes. O **Quadro 37** apresenta o programa e seus respectivos projetos e ações.

Quadro 37 – Programa, projetos e ações estruturantes para os sistemas de esgotamento sanitário.

Programa	Projetos	Ações	Prazo de Execução		cução	Responsável
	ľ		Curto	Médio	Longo	-
Governança Operacional e Gestão de Dados	Regularização, Capacitação e Monitoramento	Assegurar que o sistema de esgotamento sanitário esteja em conformidade com as normas ambientais vigentes, por meio do monitoramento contínuo e da renovação das licenças necessárias, garantindo a operação legal e ambientalmente adequada. Promover treinamentos regulares para os colaboradores, com foco em práticas inovadoras, operação eficiente do sistema de esgotamento e conformidade com as regulamentações ambientais. Realizar estudos técnicos detalhados voltados à expansão e melhorias do sistema de esgotamento sanitário, com foco em aumentar a cobertura e melhorar a eficiência operacional e ambiental.				Concessionária

Programa	Projetos	Ações	Prazo de Execução			Responsável
		3	Curto	Médio	Longo	
		Implementar um sistema de				
		informações geográficas para				
		monitorar e avaliar a				
		performance do sistema de				
		esgotamento sanitário em				
		tempo real, permitindo a				
		detecção de problemas				
		operacionais e a otimização da				
		gestão dos serviços.				
		Integrar e atualizar				
	Integração e	continuamente os dados				
	Atualização de	cadastrais e operacionais do				
	Dados	sistema de esgotamento				Concessionária
	Cadastrais e	sanitário, garantindo a				
	Operacionais	eficiência na gestão de recursos				
		e a tomada de decisões.				
		Implementar medidas de fiscalização e combate a				
	Fiscalização e Controle de Ligações	ligações clandestinas no sistema de esgotamento				Prefeitura Municipal e Concessionária
		sanitário, visando a				
		regularização de usuários e a				
	Irregulares	redução de impactos negativos				Concessionaria
		na operação e no meio				
		ambiente.				
		Implementar medidas de				
		fiscalização e acompanhamento				
Gestão de	Fiscalização e	da efetivação da adesão dos				D C :
Conformidade	Controle de	usuários ao SES de modo a				Prefeitura Municipal
e Eficiência	Adesão ao SES	garantir o devido				Municipal
Energética		encaminhamento dos efluentes				
		ao tratamento.				
		Implementar medidas de				
		eficiência energética no sistema				
		de esgotamento sanitário, como				
		a substituição de equipamentos				
	Otimização	obsoletos por novas tecnologias				Concessionária
	Energética	de baixo consumo energético e				
		a automação de processos operacionais para reduzir o				
		consumo de energia nas				
		unidades.				
		Implementar um sistema de				
		monitoramento contínuo para				
Segurança e	Controle da	garantir que os efluentes				
Monitoramento	Qualidade do	tratados atendam aos padrões				Concessionária
da Efluente	Efluente	de qualidade exigidos por				
Tratado	Tratado	regulamentações ambientais,				
		prevenindo a contaminação de				

Programa	Projetos	Ações	Praz	o de Exec	Responsável	
			Curto	Médio	Longo	
		corpos d'água e promovendo a				
		saúde pública.				

5.4. Programa de desenvolvimento institucional e setorial

A gestão eficaz de sistema de saneamento básico envolve coordenar o abastecimento de água e esgotamento sanitário de forma integrada. Para isso, são adotadas ações que considerem especificidades locais e promovam o uso sustentável dos recursos.

Educação ambiental e engajamento da comunidade são elementos-chave para sensibilizar sobre a importância do saneamento adequado e incentivar práticas responsáveis. A participação ativa dos cidadãos no processo decisório e na fiscalização das ações contribui para melhorar continuamente os serviços e assegurar um ambiente saudável para todos.

As ações de gestão apresentam, portanto, caráter técnico e institucional, sendo voltadas para melhorias dos serviços de abastecimento de água e esgotamento sanitário. O **Quadro 38** apresenta os principais projetos e ações de gestão continuada.

Quadro 38 – Programa, projetos e ações de desenvolvimento institucional e setorial.

Programa	Projetos	Ações	Responsável
	Sistema de	Implantação de sistema regional de informações sobre saneamento	
	Informações sobre Saneamento	(eixo de água e esgoto) com cadastro georreferenciado. Manutenção e atualização do sistema regional de informações sobre saneamento com cadastro georreferenciado.	Concessionária
Programa de Gestão Institucional	Gestão Interna e Externa	Medidas de articulação e desenvolvimento operacional, institucional, tecnológico e/ou de inovação, eficiência energética e serviços especiais. Monitoramento e avaliação sistemática do Plano Regional de Água e Esgoto - RS.	Concessionária e/ou Prefeitura
e Setorial	Comunicação, Sensibilização e Mobilização Social	Desenvolvimento e manutenção de campanhas constantes de conscientização e incentivo às práticas de uso racional da água e consumo consciente, com ênfase em grandes unidades consumidoras. Desenvolvimento e manutenção de campanhas de conscientização/sensibilização dos usuários sobre a importância das ligações domiciliares às redes coletoras de esgotamento	Concessionária e/ou Prefeitura

Programa	Projetos	Ações	Responsável
		sanitário e redes de abastecimento de água, esclarecendo os benefícios da regularização para o bem-estar social e ambiental. Desenvolvimento e manutenção de campanhas de conscientização/sensibilização dos usuários sobre a proteção dos mananciais e temas ambientais relevantes para o SAA e o SES.	

5.5. Fonte de Financiamento

O Plano Regional abrange a prestação regionalizada dos serviços pela CORSAN, por meio de contratos de programa e contratos de concessão que delegam à Companhia a responsabilidade pela realização dos investimentos necessários para atingir os objetivos definidos neste planejamento regional.

Logo, a fonte de financiamento é privada e atribuída à CORSAN, a quem compete custear os investimentos com recursos próprios ou mediante captação de recursos de terceiros em conformidade com as alternativas disponíveis no mercado de capitais e/ou financeiro, incluindo o acesso a recursos federais nos moldes previstos no art. 50 da Lei Federal 11.445/2007.

Para tanto, os Municípios são responsáveis pela adoção das providências atribuídas legalmente aos titulares dos serviços, especialmente aquelas exigidas pelo art. 50 da Lei Federal 11.445/2007, para assegurar que não haja qualquer obstáculo ao eventual acesso da Concessionária a recursos federais.

6. AÇÕES DE EMERGÊNCIAS E CONTINGÊNCIAS

O plano de contingência e emergência estabelece um conjunto de ações planejadas e implementadas a serem adotadas durante emergências que possam ocorrer e afetar o sistema de abastecimento de água e/ou o sistema de esgotamento sanitário do município, ocasionando interrupções no abastecimento de água e/ou extravasamento de esgoto com contaminação de cursos d'agua ou áreas de proteção ambiental e riscos para a saúde pública, segurança e meio ambiente.

Os objetivos principais do plano de contingência e emergência são identificar e definir os eventos emergenciais e os riscos envolvidos nos sistemas de abastecimento de água e coleta e tratamento de esgoto, e apresentar as ações preventivas e mitigadoras para conter os efeitos danosos. A implementação das ações elencadas no plano visa majoritariamente:

- Restringir ao máximo os impactos dos riscos potenciais identificados;
- Antecipar que situações externas ao evento contribuam para o seu agravamento;
- Promover medidas básicas para restringir danos às áreas definidas;
- Proteger a integridade física da população e funcionários envolvidos;
- Evitar danos que excedam a capacidade dos afetados em conviver com o impacto.

A elaboração e estruturação do presente plano visam atendimento das resoluções normativas das Agências Reguladoras do Rio Grande do Sul - AGERGS e AGESAN - (Resolução AGERGS nº 37/2017, Resolução Agesan CSR Nº 013/2023). Desta forma, são apresentadas um mapeamento das vulnerabilidades dos sistemas, a classificação dos riscos, os procedimentos detalhados para mitigar danos em caso de emergência e os responsáveis envolvidos nos processos. A abrangência da aplicação do plano de contingência são as unidades operacionais dos sistemas descritos a seguir:

- Sistema de abastecimento de água abrangendo manancial, captação adutoras, estação de tratamento, rede de distribuição e reservatórios;
- Sistema de esgotamento sanitário abrangendo redes coletoras, estações de bombeamento de esgoto, estação de tratamento e corpo receptor.

6.1. Avaliação das vulnerabilidades do sistema de abastecimento de água e do sistema de esgotamento sanitário

A identificação das vulnerabilidades do sistema de água e de esgoto foi realizado analisando as unidades consideradas essenciais para o funcionamento do sistema e verificadas as hipóteses de situações emergenciais com potencial para causar impacto negativo aos usuários e meio ambiente.

Na definição destas condições emergenciais considerou-se que estão fora da matriz de riscos os eventos que não geram impacto direto de dano ambiental, aos consumidores, que sejam de baixa complexidade e de solução rápida através da estrutura de manutenção de cada sistema. Nesta situação elencamos as seguintes atividades

- Manancial Pequenas alterações na capacidade de fornecimento de água para captação e que não resulte em alteração de vazão e risco de situação de emergência;
- Adutoras de água bruta e tratada Rompimentos reparados em intervalo de tempo suficiente para não gerar problemas de desabastecimento (máximo 8 – 12 horas)
- Elevatórias de água bruta e tratada Paralisação de conjunto de bombeamento onde é acionado o conjunto de reserva e/ou pequenas manutenções que não geram paralisação do funcionamento da elevatória;
- Rede de distribuição Reparos de rede nos tempos < 12 horas e que tenham impacto setorial sem ser considerado um desabastecimento;
- Estação de tratamento de água Pane nos equipamentos bem como eventos de vandalismo e incêndio que não impactam em paralisação de funcionamento da ETA:
- Rede de coleta de esgoto Reparos de rede nos tempos < 12 horas;
- Elevatórias de esgoto bruto Paralisação de conjunto de bombeamento onde é acionado o conjunto de reserva e/ou pequenas manutenções que não geram paralisação do funcionamento da elevatória e extravasamento para meio ambiente;

 Estação de tratamento de esgoto – Pane nos equipamentos bem como eventos de vandalismo e incêndio que não impactam em paralisação de funcionamento da ETE e extravasamentos.

6.2. Categorização dos riscos/vulnerabilidades

6.2.1. Definições dos critérios de vulnerabilidade

A análise de riscos/vulnerabilidades permite a identificação, avaliação e gerenciamento dos riscos que possam comprometer todo o sistema operacional. Para cada risco/vulnerabilidade identificado, define-se: a probabilidade de ocorrência dos eventos, os possíveis danos potenciais em caso de acontecimentos, possíveis ações preventivas e contingências, bem como a identificação de responsáveis por ação.

Para a classificação das vulnerabilidades foi utilizada como referência a metodologia da ABNT NBR ISO 14001/2015.

Para atribuição de pesos e pontuação das gravidades, após a identificação e classificação, executou-se uma análise qualitativa e quantitativa. A análise qualitativa dos riscos/vulnerabilidades foi realizada por meio da classificação escalar da probabilidade e do impacto, conforme a graduação apresentada nos quadros a seguir.

Quadro 39 - Matriz de determinação da probabilidade.

Probabilidade	Valor	Descrição	
Muito Baixa	1	Rara. Ocorre somente em circunstâncias excepcionais.	
Baixa	2	Improvável. Pode ocorre em algum momento.	
Média	3	Possível. Deve ocorrer em algum momento.	
Alta	4	Provável. Vai ocorrer na maioria das circunstâncias.	
Muito Alta	5	Quase certa. Ocorre em quase todas as circunstâncias.	

Fonte: Elaboração própria (2024).

Quadro 40 - Matriz de determinação do impacto/consequência.

Impacto/Consequência	Valor	Geral
Muito Baixo	1	Consequências são tratadas com operações de rotina
Baixo	2	Consequências não ameaçam a eficácia e eficiência do processo
Médio	3	Consequências ameaçam levemente a eficácia e/ou eficiência do processo
Alto	4	Consequências ameaçam significativamente a eficácia e/ou eficiência do processo
Muito Alto	5	Consequências ameaçam o fortemente o processo e a organização

6.2.2. Definições dos critérios de gravidade

A definição dos critérios de gravidade foi realizada pela avaliação qualitativa do risco/vulnerabilidade de acordo com sua probabilidade de ocorrência, bem como seu impacto potencial de acordo com os dados apresentados nas matrizes apresentadas acima.

O quadro a seguir apresenta a Matriz Probabilidade x Impacto, instrumento responsável pela definição da classificação do nível de risco/vulnerabilidade

Quadro 41 – Matriz probabilidade x impacto para classificação do risco.

Matriz de vulnerabilidade (P x 1) pa	Aatriz de vulnerabilidade (P x 1) para a determinação dos patamares de graduação dos riscos (grau de ameaça)							
			Impacto					
Probabilidade	1	2	3	4	5			
1	1	2	3	4	5			
2	2	4	6	8	10			
3	3	6	9	12	15			
4	4	8	12	16	20			
5	5	10	15	20	25			

Classificação	Código	Pontuação
Não significativos	(NS)	Abaixo de 15
Significativos	(S)	Igual ou maior do que 15

Fonte: Elaboração própria (2024).

Cálculo do Risco:

R = P x I

R: Risco;

P: Probabilidade;

I: Impacto.

O produto da probabilidade pelo impacto de cada risco deve se enquadrar em uma região da matriz probabilidade x impacto conforme o quadro a seguir.

Caso o risco/vulnerabilidade se enquadre na região verde, seu nível de risco é entendido como baixo, logo se admite a aceitação ou adoção de medidas preventivas. Se estiver na região amarela, entende-se como médio e devem ser adotadas medidas de controle e monitoramento e se estiver na região vermelha, entende-se como nível de risco/vulnerabilidade alto e deverá ser realizado o plano de emergência e contingência.

Quadro 42 - Classificação do risco.

Classificação do risco									
Risco Tolerável: sem necessidade de plano de ação além dos pr já estabelecidos na companhia									
Risco médio	Monitoramento e Gestão: o evento necessita acompanhamento e comunicação constante com área operacional e de gestão.								
Risco alto	Risco Significativo: Deverá ser elaborado Plano de Ação para implementação do controle								

Fonte: Elaboração própria (2024).

6.3. Critérios de priorização dos riscos/vulnerabilidades

Como critério de priorização e direcionamento das ações mitigadoras, as vulnerabilidades são priorizadas conforme seu grau de risco, sempre do mais alto para o mais baixo. Nos casos de riscos classificados como médio e alto, deve-se adotar obrigatoriamente as medidas preventivas previstas.

6.4. Plano de ações de emergências e contingências

De forma a evitar e/ou minimizar a ocorrência de eventos emergenciais indesejáveis e os impactos ocasionados por estes, neste capítulo serão definidas ações e procedimentos mitigadores necessários para uma rápida tomada de decisão, tendo por referência os cenários acidentais elencados no sistema de água e de esgoto.

Nos quadros a seguir, está demonstrada a relação dos eventos relevantes do SAA e SES que podem ocorrer (riscos/vulnerabilidades), as medidas de detecção dos eventos, tempo de detecção, os efeitos das situações de emergência, as ações mitigatórias e de emergência propostas para reduzir os riscos e os efeitos da emergência, a classificação dos riscos identificados para cada situação e os potenciais afetados.

Quadro 43 – Ações de Contingência e Emergência – SAA.

Atividades	Fontes de Risco	D'arra	Medida de	Tempo previsto para detecção Impactos (danos		Controle (medidas de	Risco s		Pontos
Atividades	(Vulnerabilida de)	Riscos	detecção	do risco (h: min)	associados)	mitigação)	P	I	Pontos
CAPTAÇÃO SUPERFICIAL	Estiagem prolongada	Redução da disponibilidade de água bruta, causando paralisação total ou parcial da captação de água bruta do manancial	Medição manual de nível	Imediato	Desabastecimento do SAA	Programar caminhão pipa para consumidores essenciais, implantar rodízio abastecimento	2	5	10
CAPTAÇÃO SUPERFICIAL	Ocorrência de cheias severas	Inundação das unidades operacionais; Redução da disponibilidade de água bruta, causando paralisação total ou parcial da captação de água bruta do manancial	Medição manual de nível	Imediato	Desabastecimento do SAA	Programar caminhão pipa para consumidores essenciais, implantar rodízio abastecimento	2	5	10
CAPTAÇÃO SUPERFICIAL	Despejos de produtos contaminantes voluntariamente ou por acidente	Contaminação da água bruta; Paralisação total ou parcial da captação de água bruta do manancial	Monitoramento laboratorial (análises da água)	Variável	Desabastecimento do SAA	Adequação do processo de tratamento se houver condições técnicas; Monitoramento e avaliação da concentração dos contaminantes para restabelecer a captação; Programar o fornecimento de água por meio de carros-pipa para consumidores especiais; Implantar sistema de rodízio de abastecimento para reduzir os efeitos do desabastecimento	2	5	10

40.11.1	Fontes de Risco	D.	Medida de	Tempo previsto	Impactos (danos	Controle (medidas de	Ris	co s	D (
Atividades	(Vulnerabilida de)	Riscos	detecção	detecção para detecção do risco (h: min)		mitigação)	P	I	Pontos
CAPTAÇÃO SUPERFICIAL	Ocorrência de proliferação de algas no manancial	Contaminação da água bruta; Redução da capacidade de tratamento	Monitoramento laboratorial (análises da água)	Variável	Desabastecimento parcial	Adequar o processo de tratamento para remoção dos efeitos da proliferação de algas; Redução de vazão de operação para ajustar com a capacidade de tratamento afetada por ocorrência de algas no manancial	3	4	12
	Oscilação/interr upção no fornecimento de energia elétrica	Parada adução de água bruta				Necessidade gerador em falta de energia prolongada	3	4	12
	Oscilação/interr upção no fornecimento de energia elétrica	Monitoramento na Estação Monitorado pelo COI	Variável	Desabastecimento da região de abrangência desta EBAT	Comunicar a concessionária de energia Necessidade de gerador de energia	3	5	15	
EBAT	Defeitos eletromecânicos nos equipamentos	Parada no envio de água tratada	Monitoramento na Estação Monitoramento realizado pelo COI	Variável	Desabastecimento da região de abrangência desta EBAT	Acionar Coordenadoria Eletromecânica para substituição ou conserto do equipamento	3	5	15
RESERVATÓRIOS	Nível Baixo ou extravasamento	Falta de água interna	Monitoramento Realizado pelo COI	Variável	Desabastecimento da região de abrangência deste reservatório	Equipe local deve verificar motivo da falha, para possíveis manobras de redes, e se for causa eletromecânica, acionar Coordenadoria Eletromecânica	3	4	12
REDE DE ABASTECIMENTO E/OU ADUTORA	Rompimento de rede	Falta de água geral ou setorizada	Através do sistema de telemetria, visualmente e/ou	Variável	Falta de água geral ou setorizada	Acionamento da equipe para realizar o conserto	3	5	15

Atividades	Fontes de Risco (Vulnerabilida	Riscos	Medida de	Tempo previsto para detecção	Impactos (danos	Controle (medidas de	Ris	co s	Pontos
Atividades	de)	Niscus	detecção	do risco (h: min)	associados)	mitigação)	P	I	1 ontos
			por reclamação						
			de usuários.						
			Monitorado Pelo						
			COI						

Quadro 44 – Plano de ação para riscos definidos como alto do SAA.

Atividades	Fontes de Risco (Vulnerabilidade)	Riscos	Plano de Ação		
EBAT	Oscilação/interrupção no fornecimento de energia elétrica	Desabastecimento da região de abrangência desta EBAT	Usar gerador e manter equipamentos reserva		
EBAT	Defeitos eletromecânicos nos equipamentos	Desabastecimento da região de abrangência desta EBAT	Usar gerador e manter equipamentos reserva		
REDE DE ABASTECIMENTO E/OU ADUTORA	Rompimento de rede	Falta de água geral ou setorizada	Acionar caminhão pipa de tempo de conserto resultar en mais de 24h de desabastecimento		

Fonte: Elaboração própria (2024).

Quadro 45 – Ações de Contingência e Emergência – SES.

A41-13-3	Fontes de Risco	Riscos	Medida de	Tempo de	Impactos (danos	Controle (medidas de	Riscos		Destar
Atividades	(Vulnerabilidade)	Kiscos	detecção	deteção (h: min)	associados)	mitigação)	P	I	Pontos
ELEVATÓRIA DE ESGOTO BRUTO	Oscilação/interrupção no fornecimento de energia elétrica	Interrupção do recalque do esgoto causando	Monitoramento da Estação	Variável	Extravasamento de esgoto	Avaliação da necessidade de instalação do sistema contingência elétrica (ex: geradores); Acionamento dos caminhões hidrojato para coleta do esgoto e envio para estação de tratamento	4	5	20
ELEVATÓRIA DE ESGOTO BRUTO	Excesso de sólidos depositados adensados nos poços	Afetar na eficiência do bombeamento	Visualmente, Monitoramento da Estação	Variável	Transbordamento de esgoto em via publica	Limpeza constante dos poços das estações de bombeamento	3	5	15
ELEVATÓRIA DE ESGOTO BRUTO	Defeitos eletromecânicos nos equipamentos	Instabilidade no Sistema	Monitoramento da Estação	Variável	Interrupção do recalque do esgoto causando extravasamento de esgoto	Acionar Coordenadoria Eletromecânica para substituição ou conserto do equipamento; Acionamento dos caminhões hidrojato para coleta do esgoto e envio para estação de tratamento; Implantar manutenção preventiva para redução de ocorrências de manutenção.	3	4	12
ELEVATÓRIA DE ESGOTO BRUTO	Vandalismo	Dano patrimonial e de instabilidade no sistema	Vistoria no local, sistema de monitoramento remoto	Variável	Paralisação prolongada do bombeamento para reparos dos danos do vandalismo de extravasamento dos esgotos.	Registro de boletim de ocorrência, acionamento das equipes eletromecânicas para restabelecer a operação	1	4	4
REDES COLETORAS	Rompimento de rede	Extravasamento localizado, contaminação do solo e de corpos hídricos	Visualmente e/ou por reclamação de usuários	Variável	Ocorrência de extravasamento de esgoto para a via pública até o reparo da tubulação	Acionamento da equipe para realizar o conserto do vazamento	3	4	12

	Fontes de Risco	D:	Medida de	Tempo de	Impactos (danos	Controle (medidas de	Ris	cos	D (
Atividades	(Vulnerabilidade)	Riscos	detecção	deteção (h: min)	associados)	mitigação)	P	I	Pontos
REDES COLETORAS	Obstrução da rede coletora de esgoto	Extravasamento, contaminação do solo e de corpos hídricos	Visualmente e/ou por reclamação de usuários	Variável	Ocorrência de extravasamento de esgoto para a via pública e/ou ramais domiciliares até o reparo da tubulação	Acionamento da equipe para executar limpeza da tubulação	2	5	10
ЕТЕ	Ocorrência de falta prolongada de energia elétrica		Monitoramento da Estação	Variável	Paralisação tratamento do efluente, lançamento efluente fora do padrão	Avaliação da necessidade de instalação do sistema contingência elétrica (ex: geradores)	3	4	12
ЕТЕ	Defeitos eletromecânicos nos equipamentos		Monitoramento da Estação	Variável	Paralisação tratamento do efluente, lançamento efluente fora do padrão	Registro de boletim de ocorrência, acionamento das equipes eletromecânicas para restabelecer a operação	2	2	4
ETE	Vandalismo	Dano patrimonial e de instabilidade no sistema	Monitoramento da Estação Sistema de monitoramento remoto	Variável	Paralisação do tratamento, lançamento do efluente fora do padrão	Registro de boletim de ocorrência, acionamento das equipes eletromecânicas para restabelecer a operação	1	5	5
ЕТЕ	Ocorrência de vazamento de produtos químicos paralisando a operação	Dano Ambiental	Visualmente, Monitoramento da Estação	Variável	Paralisação do tratamento, lançamento do efluente fora do padrão	Executar os planos emergenciais específicos para cada produto e corrigir a falha e restabelecer o sistema e ou entrar em contato com responsável técnico	1	5	5
EMISSÁRIO DO EFLUENTE TRATADO	Rompimento de rede	Extravasamento, contaminação do solo e de corpos hídricos	Visualmente, Monitoramento da Estação	Variável	Ocorrência de extravasamento de esgoto	Acionamento da equipe para realizar o conserto do vazamento	3	4	12
CORPO RECEPTOR	Elevação da cota do corpo receptor com inundação das	Contaminação do solo e de corpos hídricos	Visualmente, Monitoramento da Estação	Variável	Possível alteração temporária dos padrões de lançamento	Entrar em contato com responsável técnico	1	5	5

Atividadas	Fontes de Risco (Vulnerabilidade)	Riscos	Medida de	Tempo de deteção (h:	Impactos (danos	Controle (medidas de	Ris	cos	Pontos
Atividades		Riscos	detecção	min)	associados)	mitigação)	P	I	rontos
	unidades de								
	tratamento								

Quadro 46 - Plano de ação para riscos definidos como alto do SES.

Atividades	Fontes de Risco (Vulnerabilidade)	Riscos	Plano de Ação			
ELEVATÓRIA DE ESGOTO BRUTO	Excesso de sólidos depositados adensados nos poços	Afetar na eficiência do bombeamento	Manter política de manutenção preventiva			
ELEVATORIA DE ESGOTO BRUTO	Oscilação/interrupção no fornecimento de		Fornecimento de Gerador através da instalação de			
	energia elétrica	causando	equipamento próprio ou do contrato emergencial.			

Fonte: Elaboração própria (2024).

6.5. Demais ações contingência e emergência

Além das ações já elencadas algumas ações específicas foram previstas para os sistemas de captação e tratamento de água e para o caso de falta de energia elétrica.

Para garantia da segurança das estações de tratamento de água e disponibilidade da água tratada esse plano representa um instrumento preventivo útil ao planejamento do abastecimento e visa a segurança do recurso, em quantidade e qualidade. A segurança física das instalações é realizada através de cercamento e estruturas físicas com alarme.

A segurança da qualidade e controle da água tratada é realizada através das análises na ETA e no laboratório Central.

Como fonte alternativa de energia elétrica para as captações de água bruta e para as estações de tratamento de água e estações elevatórias de água, em caso de falta de energia elétrica, avalia-se no momento da ocorrência a instalação de geradores provisórios até a retomada do fornecimento de energia.

6.6. Avaliação de alternativas de suprimento hídrico, inclusive com definição de manancial de reserva para garantir o abastecimento em situações de falha ou insuficiência da captação original

Conforme recomendação da agência reguladora, como alternativa de suprimento hídrico está prevista a disponibilização de carros pipa a partir de 24 (vinte e quatro) horas de interrupção, e, naquelas que excederem 72 (setenta e duas) horas, de frota com capacidade para fornecer um volume por economia suficiente às necessidades básicas vitais de todos os seus habitantes padrão.

Para qualquer evento de interrupção do abastecimento é previsto imediatamente de suprimento hídrico alternativo (caminhão-pipa) para entidades prestadoras de serviços de saúde com internação de pacientes ou custódias permanentes, instituições carcerárias, creches e estabelecimentos de ensino, dentre outros que sejam utilizados para a prestação

de serviços públicos essenciais ou que concentrem grande número de pessoas, enquanto perdurar a interrupção.

A forma de abastecimento dos caminhões-pipa é através do carregamento na cidade vizinha, Alegrete.

6.7. Monitoramento e controle dos mananciais

O planejamento e execução de atividades de proteção dos recursos hídricos do Estado são de responsabilidade do Sistema de Recursos Hídricos do Rio Grande do Sul, conforme determinado pela Lei Estadual nº 10.350/1994. Nesse contexto, a CORSAN participa de todos os Comitês de Gerenciamento e Bacias Hidrográficas o Rio Grande do Sul.

Complementarmente, a CORSAN acompanha o monitoramento do nível dos mananciais em seus pontos de captação e realiza o monitoramento qualitativo dos pontos de captação de água de lançamento de efluentes conforme legislação vigente.

6.8. Descrição do protocolo de comunicação com usuários de água potencialmente impactados pelo desabastecimento/risco ambiental devido a panes ou manutenções programadas e responsáveis pela comunicação

A Unidade de Saneamento (US), ETA, Operações ou Eletromecânica identificarão o(s) bairro(s) /setor (es) possivelmente afetado(s) por falta de abastecimento/risco ambiental, quando da ocorrência de panes ou manutenções programadas. A Supervisora Operacional é responsável pela abertura de protocolo na Concessionária ou alerta ao Centro de Operações Integradas (COI). Posteriormente é aberto um protocolo no Sistema de relacionamento com o cliente que em seguida dispara aviso ao usuário.

As informações serão repassadas ao Centro de Operações Integradas que disponibilizará a informação para a equipe do Call Center (0800), aplicativo e site da Companhia (www.corsan.com.br).

Em casos que possam acarretar eventos de grandes proporções, além dos procedimentos acima citados, a situação será avaliada e a comunicação externa seguirá o procedimento

hierárquico da empresa, com a divulgação aos usuários através da Assessoria de Imprensa Regional.

6.9. Descrição dos procedimentos operacionais relacionados, abrangendo a localização das ferramentas e dos equipamentos de manutenção, e rotas de acesso aos pontos críticos

Os procedimentos operacionais e as ações que devem ser executadas pelas equipes da Companhia encontram-se descritas genericamente a seguir.

- Para o caso de avarias nas estações de bombeamento é necessário acionar as equipes eletromecânicas e se necessário o contrato especial de mergulhadores;
- Para o caso de substituição de motobombas e/ou bombas submersíveis queimadas ou avariadas e resolver problemas de telemetria são acionadas as equipes de manutenção eletromecânica;
- Para solução de problemas de vazamentos de rede são acionadas as equipes de manutenção de rede lotadas na US ou regional.

Todas as equipes, tanto da eletromecânica como as de manutenção de redes, possuem kit de equipamentos básicos necessários à execução das suas tarefas.

As ferramentas e equipamentos de manutenção estão no almoxarifado da US de Rosário do Sul.

Para acesso a pontos críticos (captação, ETA, poços) utilizam-se as estradas Flores da Cunha.

6.10. Definição dos papéis e responsabilidades de operadores e demais funcionários durante as situações de emergências

Os operadores e funcionários locais tem como responsabilidade comunicar o gestor da US ou Supervisor de Operações que por sua vez aciona os responsáveis pela solução ou mitigação da emergência, sendo eles: US, supervisor de operações, coordenadoria operacional, coordenadoria de tratamento, EHS ou coordenadoria eletromecânica.

De maneira geral as atribuições de cada setor estão descritas a seguir:

- Funcionários da ETA/ETE Relatar as emergências ou anormalidades ao gestor da COP, Operacional, US, químico responsável (de acordo com a natureza da emergência); executar as ações cabíveis ao tratamento (ex: SAA- execução do plano de emergência de cloro, fechamento de registros de produtos químicos, válvulas etc.) de modo a conter a emergência; comunicação de emergências identificadas pelo sistema supervisório fora do horário comercial. Acionamento da concessionária em casos de queda de energia;
- Coordenador de qualidade / Químico responsável Orientar o pessoal do tratamento sobre como proceder nos casos de emergências; realizar as comunicações cabíveis aos demais gestores; manter contato com a Superintendência de tratamento e regional; acionar os serviços dentro dos contratos existentes para remediação de emergências e realizar contato com a FEPAM quando necessário;
- Gestor da COP/Operacional Acionar as equipes de manutenção eletromecânica e de rede; entrar em contato com o departamento de telemetria; acionar o departamento de manutenção e contratos a disposição para resolver situações de desabastecimento; monitorar o sistema e detectar possíveis melhorias, providenciar materiais necessários para a execução das manutenções e acompanhar os serviços até o restabelecimento;
- Equipes de manutenção eletromecânica Responsável por restabelecer o funcionamento dos equipamentos na estação de tratamento, estações de bombeamento, reservatórios e restabelecer o funcionamento de válvulas, entre outros equipamentos eletromecânicos que exijam ação emergencial;
- Equipes de manutenção de rede Responsável por restabelecer o funcionamento das adutoras e redes de distribuição.

Além das atribuições já elencadas o fluxo de informações e ações entre os setores estão descritos a seguir.

■ Falha eletromecânica: operador/funcionário → coordenadoria eletromecânica;

- Oscilação/interrupção no fornecimento de energia elétrica: operador/funcionário
 → supervisor de operações/coordenadoria operacional;
- Vandalismo: operador/funcionário → US → polícia;
- Perda do sistema de telemetria: operador/funcionário → coordenadoria eletromecânica;
- Vazamento de produtos químicos: operador/funcionário → coordenadoria de tratamento;
- Nível baixo ou extravasamento: operador/funcionário → coordenadoria operacional/ coordenadoria de tratamento;
- Rompimento de rede: operador/funcionário → US → coordenadoria operacional;
- Comprometimento do suprimento de insumos: operador/funcionário → coordenadoria de tratamento;
- Contaminação de água tratada em redes e reservatórios: operador/funcionário → coordenadoria de tratamento;
- Contaminação de mananciais: operador/funcionário → coordenadoria de tratamento;
- Epidemias e surtos: operador/funcionário → coordenadoria de tratamento;
- Incêndios em unidades: operador/funcionário → bombeiros → EHS;
- Redução drástica de vazão de mananciais: operador/funcionário → coordenadoria de tratamento;
- Rompimento de barragens: operador/funcionário → coordenadoria operacional/EHS;
- Acidentes no transporte rodoviário de produtos químicos: operador/funcionário
 → coordenadoria de tratamento.

7. MECANISMOS E PROCEDIMENTOS PARA AVALIAÇÃO SISTEMÁTICA DA EFICIÊNCIA E EFICÁCIA DAS AÇÕES

Segundo a Fundação para o Prêmio Nacional da Qualidade (1995), indicador se trata de uma relação matemática que é capaz de medir, de forma numérica, atributos de um determinado processo ou, ainda, seus resultados, permitindo que o Concessionária analise o cumprimento de metas estabelecidas. Esses indicadores oferecem uma base numérica que facilita a comparação entre os resultados reais e os objetivos previamente traçados, viabilizando decisões informadas sobre ajustes e melhorias no serviço prestado.

O uso de indicadores está alinhado à legislação ambiental brasileira, que exige monitoramento contínuo para promover avanços na qualidade de vida, saúde pública, bem-estar social e condições ambientais. Com essa perspectiva, o Prestador deve implementar procedimentos e técnicas de avaliação que contemplem metas de desempenho, controle de recursos, e verificação do cumprimento das metas programadas. Para isso, devem ser mobilizados recursos humanos, materiais tecnológicos e administrativos, tanto para a execução quanto para o monitoramento e fiscalização das atividades realizadas.

Em termos de responsabilidade, o Concessionária deve garantir a continuidade e adequação do saneamento básico, abrangendo desde o acompanhamento das manutenções até a gestão de tarifas, de modo a manter a sustentabilidade financeira do sistema. Com a análise regular dos indicadores, especialmente de cobertura e índices de perdas, busca-se alcançar uma maior eficiência nos sistemas de abastecimento de água e esgotamento sanitário.

No mínimo, o processo de monitoramento deve incluir as etapas de:

- Planejamento: Definição das metas, análise dos dados, programação de coletas e divulgação de diagnósticos;
- Coleta: Recebimento e controle dos dados, acompanhamento de cronogramas e garantia da qualidade das informações;

- Diagnóstico: Cálculo dos indicadores e produção de análises em formato textual e gráfico, incluindo processamento dos dados coletados;
- **Divulgação**: Comunicação dos resultados e informações relevantes à sociedade.

Para indicadores que não atinjam os resultados esperados, deve-se implementar um plano de ações corretivas, contendo justificativas para as não conformidades e detalhes das etapas a serem seguidas para o aprimoramento. As ações corretivas, assim como todas as ações de monitoramento, devem ser detalhadas conforme o objetivo, tipo de ação (corretiva ou preventiva), prazo de execução, agente responsável e estimativa de custos.

A efetividade dessas ações depende do cumprimento dos objetivos no prazo e orçamento estabelecidos. O processo de escolha dos indicadores, coleta de dados e análise de resultados permite ao Prestador mensurar o impacto das ações realizadas ao longo do tempo, garantindo uma abordagem sistemática e consistente.

A criação de um banco de dados acessível centraliza todas as informações relevantes, facilitando a consulta e a transparência na prestação de contas. Esse banco serve não só para análises atuais, mas também para planejamento de ações futuras, visando à continuidade e aprimoramento dos serviços prestados em saneamento básico.

7.1. Indicadores operacionais

O saneamento básico é um direito social na Constituição Federal, ou seja, todo indivíduo deve gozar plenamente do acesso à água tratada, abastecida de forma ininterrupta, da coleta e tratamento dos efluentes sanitários e da gestão efetiva de resíduos. Estes serviços ultrapassam os aspectos ambientais, tratando-se de fatores de saúde pública.

Sendo assim, os indicadores para avaliação do sistema de abastecimento de água e serviços de esgotamento sanitário são instrumentos importantes para análise de desempenho dos provedores deste serviço. Não obstante, dada a importância do saneamento básico para a higidez humana, mensuram pontos cruciais de bem-estar social.

Os indicadores aqui dispostos estão de acordo com os Contratos de Concessão assinados entre os municípios e a CORSAN. Importante ressaltar que a Agência Reguladora poderá instituir outros indicadores de desempenho, desde que o Equilíbrio Econômico-Financeiro seja mantido, ou que haja o devido reestabelecimento.

Além disso, a metodologia de cálculo dos indicadores de universalização segue os seguintes critérios:

- As metas de universalização, juntamente com seus respectivos índices, são calculadas para a área de prestação dos serviços;
- As metas de universalização e seus índices não consideram: (i) imóveis localizados em Áreas Irregulares e (ii) imóveis situados em áreas com densidade inferior a 1 (uma) ligação para cada 20 (vinte) metros de rede;
- São consideradas economias factíveis as unidades consumidoras ou domicílios que possuem condições para serem conectados às redes públicas de abastecimento de água e esgotamento sanitário;
- Para fins de comprovação do cumprimento das metas de universalização, serão consideradas as soluções individuais de coleta e tratamento de esgoto sanitário existentes na área de prestação dos serviços.

7.1.1. Nível de universalização dos serviços de água

Acompanha a cobertura dos serviços de abastecimento de água, fornecido pelo Concessionária para cada município, seguindo a fórmula:

$$NUA = \frac{Economias \ Residenciais \ de \ \acute{A}gua}{Domic\'ilios \ Residenciais} \ x \ 100$$

Onde,

Economias residenciais de água: número de economias residenciais que possuem acesso aos serviços de abastecimento de água, na área da prestação dos serviços, incluindo economias residenciais ativas, inativas e factíveis, obtidas a partir dos cadastros comercial e operacional da Concessionária;

Domicílios residenciais: número total de domicílios residenciais com viabilidade técnica para serem conectados à rede de abastecimento de água na Área de Prestação dos Serviços. Deverá ser calculado com base no número de domicílios estimados pelo IBGE.

Este indicador é um importante parâmetro de avaliação, não apenas por auxiliar o Concessionária a compreender a abrangência de seu atendimento, mas também por estar intrinsecamente relacionado ao Objetivo de Desenvolvimento Sustentável (ODS) número 6 – Água Potável e Saneamento – e ao ODS número 11 – Cidades e Comunidades Sustentáveis.

Desta forma, a análise criteriosa do NUA é capaz de mensurar a evolução do atendimento do serviço em relação ao objetivo proposto. O Concessionária deverá validar o índice de atendimento inicial, com base num banco de dados atualizado.

7.1.2. Nível de universalização dos serviços de esgotamento sanitário

Acompanha a cobertura dos serviços de esgotamento sanitário para cada município, aplicando o NUE. O Concessionária deverá validar o índice de atendimento inicial, com base num banco de dados atualizado, seguindo a fórmula abaixo:

$$NUE = \frac{Economias \ Residenciais \ de \ Esgoto}{Domicílios \ Residenciais} \ \ x \ 100$$

Onde,

- Economias residenciais esgoto: número de economias residenciais que possuem acesso aos serviços de esgotamento sanitário na Área de Prestação dos Serviços, incluindo economias residenciais ativas, inativas e factíveis, obtidas a partir dos cadastros comercial e operacional da Concessionária;
- Domicílios residenciais: número total de domicílios residenciais com viabilidade técnica para serem conectados à rede de esgotamento sanitário na Área de

Prestação dos Serviços. Deverá ser calculado com base no número de domicílios estimados pelo IBGE e não deverá incluir domicílios em soleira baixa ou qualquer outra impossibilidade técnica de conexão.

É fundamental que o Prestador compreenda o nível de universalização dos serviços de esgotamento sanitário, já que essa meta é prevista no ODS 6.2 – Água Potável e Saneamento – e na Lei Federal nº 14.026/2020, que exige atendimento mínimo de 90% da população até 2033. Dessa forma, os esforços do Prestador devem estar alinhados a essa meta.

8. MONITORAMENTO E AVALIAÇÃO

No âmbito do monitoramento e avaliação do plano, é importante ressaltar que o plano foi estruturado com base no panorama observado no momento de sua criação, fundamentado no diagnóstico dos aspectos institucionais, organizacionais e técnicos relacionados aos serviços de saneamento básico nos municípios. Os dados e indicadores levantados nessa etapa constituem a espinha dorsal das propostas do plano e, portanto, precisam ser monitorados e revisados de forma regular, com análises anuais.

A premissa central é que o plano de saneamento não é definitivo, mas sim um documento estratégico que requer acompanhamento contínuo para ser ajustado às novas circunstâncias que surgirem. O monitoramento frequente garante a flexibilidade necessária para atualizar as ações e metas, assegurando que o plano se mantenha adequado às mudanças contextuais e tecnológicas.

Além disso, de acordo com o art. 19, § 4º da Lei Federal nº 14.026/2020, os planos de saneamento devem ser revisados em intervalos regulares, com um prazo máximo de 10 anos entre as revisões. Essa periodicidade é essencial para garantir que o plano permaneça atual e alinhado às novas realidades, promovendo a evolução dos serviços de saneamento e o cumprimento dos objetivos estabelecidos.

9. REFERÊNCIAS BIBLIOGRÁFICAS

AGÊNCIA NACIONAL DE ÁGUAS E SANEAMENTO BÁSICO (ANA). Atlas Água 2021 - Índice de Segurança Hídrica Urbano, 2022. Disponível em: https://dadosabertos.ana.gov.br/datasets/897b12b3081c49678a1b2161c372b70c_0/ab out>. Acesso em: 26 jun. 2024.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR ISO 14001:2015: sistemas de gestão ambiental – requisitos com orientação para uso. Rio de Janeiro: ABNT, 2015. Disponível em: https://www.ipen.br/biblioteca/slr/cel/N3127.pdf>. Acesso em: junho de 2024.

BRASIL. Atlas de Desenvolvimento Humano no Brasil. 2010. Disponível em: http://www.atlasbrasil.org.br/. Acesso em: junho de 2024.

BRASIL. Conselho Nacional do Meio Ambiente (CONAMA). Resolução n° 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes. Diário Oficial da União: seção 1, Brasília, DF, 18 mar. 2005.

BRASIL. Decreto Federal n°. 76.872, de 22 de dezembro de 1975. Regulamenta a Lei n° 6.050, de 24 de maio de 1974, que dispõe sobre a fluoretação da água em sistemas públicos e abastecimento. Disponível em: https://www.planalto.gov.br/ccivil_03/decreto/antigos/d76872.htm. Acesso em: 19 jul. 2024.

BRASIL. Instituto Brasileiro de Geografia e Estatística (IBGE). Base Cartográfica do Estado do Rio Grande do Sul (2024). Disponível em: https://geoftp.ibge.gov.br/cartas_e_mapas/bases_cartograficas_continuas/bc100/rio_g rande_do_sul/>. Acesso em: junho de 2024.

BRASIL. Lei Federal n°. 6.050, de 24 de maio de 1974. Dispõe sobre a fluoretação da água em sistemas de abastecimento quando existir estação de tratamento. Disponível em: https://www.planalto.gov.br/ccivil_03/leis/l6050.htm. Acesso em: 19 jul. 2024.

BRASIL. Lei n.º 11.445, de 5 de janeiro de 2007. Estabelece diretrizes nacionais para o saneamento básico. Diário Oficial da União: seção 1, Brasília, DF, 8 jan. 2007.

Disponível em: https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2007/lei/111445.htm. Acesso em: junho de 2024

BRASIL. Lei n.º 14.026, de 15 de julho de 2020. Atualiza o marco legal do saneamento básico e altera a Lei n.º 9.984, de 17 de julho de 2000, e outras disposições. Diário Oficial da União: seção 1, Brasília, DF, 16 jul. 2020. Disponível em: https://www.planalto.gov.br/ccivil_03/_ato2019-2022/2020/lei/114026.htm. Acesso em: junho de 2024

BRASIL. Ministério da Saúde. Rio Grande do Sul é um dos quatro estados com mais municípios dependentes do SUS. Disponível em: https://www.gov.br/saude/pt-br/assuntos/noticias-para-os-estados/rio-grande-do-sul/2023/marco/rio-grande-do-sul-e-um-dos-quatro-estados-com-mais-municipios-dependentes-do-sus. Acesso em: junho de 2024.

BRITO, Maria Cecília Wey. Unidades de conservação: intenções e resultados. Annablume, 2000.

CARNEIRO, Mariko de Almeida et al. Sistemas individuais alternativos de tratamento de esgoto sanitário, 2018.

CENTRO DE ESTUDOS DA METRÓPOLE (CEM). Unidades de Conservação Ambiental do Brasil, 2021. Disponível em: ">https://centrodametropole.fflch.usp.br/pt-br/file/18443/download?token=v2kiijBr>. Acesso em: 25 jun. 2024.

CONSELHO NACIONAL DO MEIO AMBIENTE (CONAMA). Resolução CONAMA n°. 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Disponível em: https://www.icmbio.gov.br/cepsul/images/stories/legislacao/Resolucao/2005/res_conama_357_2005_classificacao_corpos_agua_rtfcda_altrd_res_393_2007_397_2008_410_2009_430_2011.pdf. Acesso em: 19 jul. 2024.

CONSELHO NACIONAL DO MEIO AMBIENTE (CONAMA). Resolução CONAMA n°. 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução n° 357, de 17 de março de 2005, do

Conselho Nacional do Meio Ambiente-CONAMA. Disponível em: https://www.legisweb.com.br/legislacao/?id=114770. Acesso em: 23 jul. 2024.

CONSELHO NACIONAL DO MEIO AMBIENTE (CONAMA). Resolução CONAMA n°. 498, de 19 de agosto de 2020. Define critérios e procedimentos para produção e aplicação de biossólido em solos, e dá outras providências. Disponível em: https://conama.mma.gov.br/index.php?option=com_sisconama&task=arquivo.downlo ad&id=797>. Acesso em: 22 jul. 2024.

COSTA, A. M.; PONTES, C. A. A.; MELO, C. H.; LUCENA, R. C. B.; GONÇALVES, F. R.; GALINDO, E. F. Classificação de doenças relacionadas a um saneamento ambiental inadequado (DRSAI) e os Sistemas de Informações em Saúde no Brasil: possibilidades e limitações de análise epidemiológica em saúde ambiental. In: CONGRESSO INTERAMERICANO DE INGENIERIA SANITARIA Y AMBIENTAL, 28., 2002, Cancum. Proceedings... Cancum: Asociacion Interamerican de Ingenieria Sanitaria y Ambiental: ABES, 2002. 1 CD-ROM.

DA PAZ, Ronilson José; DE FREITAS, Getúlio Luis; DE SOUZA, Elivan Arantes. Unidades de conservação no Brasil: História e legislação. Ronilson Paz, 2006.

DATASUS. Cadastro Nacional de Estabelecimentos de Saúde. Disponível em: https://cnes.datasus.gov.br/. Acesso em: junho de 2024.

DATASUS. Tabnet. Morbidade Hospitalar do SUS - por Local de Internação - Rio Grande do Sul. Disponível em: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sih/cnv/nirs.def>. Acesso em: junho de 2024.

FIGUEIREDO, Luciana Maria Matos. O papel do Plano Nacional de Segurança Hídrica: a universalização do acesso a água no país, principalmente no Nordeste e Ceará, 2020.

FLORENZANO, Teresa Gallotti. Geomorfologia: conceitos e tecnologias atuais. Oficina de textos, 2016.

FOSSEN, Haakon. Structural geology. Cambridge university press, 2016.

FRANCISCO, Paulo Roberto Megna et al. Classificação climática de Köppen e Thornthwaite para o estado da Paraíba. Revista Brasileira de Geografia Física, v. 8, n. 4, p. 1006-1016, 2015.

FUNDAÇÃO ESTADUAL DE PROTEÇÃO AMBIENTAL - FEPAM. Qualidade da água superficial nas regiões hidrográficas do RS (Guaíba, Litoral e Uruguai). Porto Alegre: FEPAM, 2023. Disponível em: https://fepam.rs.gov.br/relatorios-da-qualidade-da-agua. Acesso em jun. 2024.

GOMES, Denise; BONALDO, Gisele; NASCIMENTO, Evandro José. Avaliação do serviço de coleta e tratamento de esgoto em cidades brasileiras, 2019. Disponível em: https://observatorio.brasil.gov.br/analise-de-dados/2408-avaliacao-do-servico-de-coleta-e-tratamento-de-esgoto-em-cidades-brasileiras. Acesso em: 20 jul. 2024.

IBGE, 2010. Instituto Brasileiro de Geografia e Estatística. Geociências. Disponível em: < https://www.ibge.gov.br/geociencias/downloads-geociencias.html Acesso em: setembro de 2024.

IBGE, 2024. Instituto Brasileiro de Geografia e Estatística. Favelas e Comunidades Urbanas. Nota metodológicas n. 0. Sobre a mudança de aglomerados subnormais para favelas e comunidades urbanas. Disponível em: https://biblioteca.ibge.gov.br/visualizacao/livros/liv102062.pdf. Acesso em setembro de 2024.

IBGE. Banco de Dados de Informações Ambientais (BDiA): Geologia, 2024. Instituto Brasileiro de Geografia e Estatística (IBGE). Disponível em: https://bdiaweb.ibge.gov.br/#/consulta/geomorfologia>. Acesso em: 19 jun. 2024.

IBGE. Banco de Dados de Informações Ambientais (BDiA): Geomorfologia, 2024. Instituto Brasileiro de Geografia e Estatística (IBGE). Disponível em: https://bdiaweb.ibge.gov.br/#/consulta/geomorfologia>. Acesso em: 19 jun. 2024.

IBGE. Banco de Dados de Informações Ambientais (BDiA): Pedologia, 2024. Instituto Brasileiro de Geografia e Estatística (IBGE). Disponível em: https://bdiaweb.ibge.gov.br/#/consulta/geomorfologia>. Acesso em: 19 jun. 2024.

IBGE. Banco de Dados de Informações Ambientais (BDiA): Vegetação, 2024. Disponível em: https://bdiaweb.ibge.gov.br/#/consulta/geomorfologia. Acesso em: 19 jun. 2024.

IBGE. Cidades e Estados: dados do Rio Grande do Sul. Disponível em: https://www.ibge.gov.br/cidades-e-estados/rs.html>. Acesso em: 22 jun. 2024.

IBGE. Indicadores de Desenvolvimento Sustentável: Brasil 2021. Rio de Janeiro: IBGE, 2021. 652 p.

IBGE. Manual Técnico de Geomorfologia, 2009. Coordenação de Recursos Naturais e Estudos Ambientais, Manuais técnicos em geociências. Disponível em: https://docs.ufpr.br/~santos/Geomorfologia_Geologia/Manual%20t%C3%A9cnico%2 0de% 20Geomorfologia.pdf>. Acesso em: 18 jun. 2024.

IBGE. Resumo Estatístico: Brasil 2023. Rio de Janeiro: IBGE, 2023. Disponível em: https://biblioteca.ibge.gov.br/visualizacao/livros/liv101314.pdf>. Acesso em: 22 jun. 2024.

KUINCHTNER, Angélica; BURIOL, Galileo Adeli. Clima do Estado do Rio Grande do Sul segundo a classificação climática de Köppen e Thornthwaite. Disciplinarum Scientia Naturais e Tecnológicas, v. 2, n. 1, p. 171-182, 2001.

MACIEL, Jasmyne Karla Vieira Souza et al. Avaliação multicritério para escolha de soluções individuais de tratamento de esgoto em zonas rurais. 2024.

MINISTÉRIO DO MEIO AMBIENTE (MMA). Cadastro Nacional de Unidades de Conservação - CNUC, 2023. Disponível em: https://www.gov.br/mma/pt-br/assuntos/unidadesdeconservacao/consultadosuc. Acesso em: jun. 2024.

MMA, 2020. Plano de Manejo da Floresta Nacional de São Francisco de Paula. Disponível em: https://www.gov.br/mma/pt-br/assuntos/unidadesdeconservacao/planos-de-manejo. Acesso em: 25 jun. 2024.

OMS. Diretrizes da Organização Mundial da Saúde para a Qualidade da Água Potável, 2018. Disponível em:

https://apps.who.int/iris/bitstream/handle/10665/272386/9789241549950-eng.pdf?ua=1. Acesso em: 19 jul. 2024.

OMS. Protocolo de Vigilância da Qualidade da Água para Consumo Humano, 2017. Disponível em: https://www.paho.org/pt/topicos/agua-consumo-humano. Acesso em: 19 jul. 2024.

ORGANIZAÇÃO DAS NAÇÕES UNIDAS (ONU). Relatório de Progresso 2017. 2017. Disponível em: https://brasil.un.org/sites/default/files/2021-02/Brasil_Relatorio_Progresso_2017.pdf. Acesso em: junho de 2024.

PANISSET, Marco Alberto. Unidades de conservação e o desenvolvimento sustentável: conceitos, métodos e experiências. 2. ed. Brasília: MMA, 2018. 296 p.

RIO GRANDE DO SUL. Agência Estadual de Regulação dos Serviços Públicos Delegados do Rio Grande do Sul (AGERGS). Resolução n.º 37, de 16 de março de 2017. Dispõe sobre a compensação financeira a usuários de serviços públicos delegados de abastecimento de água em decorrência de interrupções de longa duração. Porto Alegre: AGERGS, 2017. Disponível em: https://agergs.rs.gov.br/upload/20181121105119ren_37_consolidada_.pdf>. Acesso em: junho de 2024.

RIO GRANDE DO SUL. Agência Reguladora Intermunicipal de Saneamento do Rio Grande do Sul (AGESAN-RS). Resolução CSR n.º 013, de 2023. Estabelece as definições dos Planos de Contingência que devem ser desenvolvidas pelos Prestadores de Serviços dos municípios regulados pela AGESAN-RS. Porto Alegre: AGESAN-RS, 2023. Disponível em: https://agesan-rs.com.br/wp-content/uploads/2023/11/RESOLUCAO_CSR_NBA_013_2023_assinado.pdf.

RIO GRANDE DO SUL. Lei n°. 10.350, de 30 de dezembro de 1994. Institui o Sistema Estadual de Recursos Hídricos, regulamentando o artigo 171 da Constituição do Estado do Rio Grande do Sul. Assembleia Legislativa do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul. Disponível em:

https://www.al.rs.gov.br/filerepository/replegis/arquivos/10.350.pdf>. Acesso em: 2 out. 2024.

RIO GRANDE DO SUL. Plano Estadual de Saneamento do Rio Grande do Sul. Porto Alegre: Governo do Estado do Rio Grande do Sul, 2021.

Acesso em: junho de 2024

RIO GRANDE DO SUL. Secretaria de Planejamento, Governança e Gestão. Departamento de Economia e Estatística. Nota técnica DEE n.º 90: resultados do PIB trimestral do Rio Grande do Sul – 4.º trimestre de 2023. Porto Alegre: SPGG-RS/DEE, 2023. Disponível em: https://www.estado.rs.gov.br/upload/arquivos/nt-dee-90-resultados-do-pib-trimestral-do-rio-grande-do-sul-4-trimestre-de-2023-2.pdf>. Acesso em: junho de 2024.

RIO GRANDE DO SUL. Secretaria do Meio Ambiente e Infraestrutura. Página inicial. Disponível em: https://www.sema.rs.gov.br/inicial. Acesso em: junho de 2024

RIO GRANDE DO SUL. Secretaria do Meio Ambiente e Infraestrutura. Plano Estadual de Saneamento – PLANESAN. Porto Alegre: SEMA, 2021. Disponível em: https://admin.sema.rs.gov.br/upload/arquivos/202210/05140355-plano-estadual-desaneamento-consultapublica.pdf. Acesso em: junho de 2024.

SILVA, Maria José Ferreira da; BARROS, Vinícius Andrade. Indicadores de sustentabilidade: Uma proposta para a bacia do rio Jucu, ES. Universidade Federal do Espírito Santo, 2019.

UNESCO. Relatório Mundial das Nações Unidas sobre Desenvolvimento dos Recursos Hídricos 2020. Disponível em: https://unesdoc.unesco.org/ark:/48223/pf0000372985. Acesso em: 22 jun. 2024.